Switchable and reversible optical elements have potential applications in self-adaptive optics. Shape-memory polymer devices with adaptive properties could be easily switched under environment or field stimuli. Here, the laser beam interference technique was used to realize the periodic grating structures of the shape-memory polymer, and memory and recovery of the grating structures were performed. A one-dimensional grating structure was fabricated from dual-beam interference lithography of a nanosecond laser and underwent pressure in a condition of 195°C. The vertical height of the grating was reduced, and the diffraction light was weakened. When the sample was cooled down to room temperature, the morphology of the grating could be kept. After raising the ambient temperature of the sample to 120°C, the morphology of the grating was recovered to the original state, which realized the shape-memory function.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.444222DOI Listing

Publication Analysis

Top Keywords

interference lithography
8
shape-memory polymer
8
grating structures
8
morphology grating
8
grating
7
shape memory
4
memory polymer
4
polymer grating
4
grating surface
4
surface fabricated
4

Similar Publications

The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.

View Article and Find Full Text PDF

Proximity-field nanopatterning (PnP) have been used recently as a rapid, cost-effective, and large-scale fabrication method utilizing volumetric interference patterns generated by conformal phase masks. Despite the effectiveness of PnP processes, their design diversity has not been thoroughly explored. Here, we demonstrate that the possibility of generating any two-dimensional lattice with diverse motifs.

View Article and Find Full Text PDF

As a non-destructive and rapid technique, optical scatterometry has gained widespread use in the measurement of film thickness and optical constants. The recent advances in deep learning have presented new and powerful approaches to the resolution of inverse scattering problems. However, the application of deep-neural-network-assisted optical scatterometry for nanostructures still faces significant challenges, including poor stability, limited functionalities, and high equipment requirements.

View Article and Find Full Text PDF

The technique of deliberately bending the substrate during the exposure offers a promising solution to eliminate the period chirp in laser interference lithography. The exact geometry of the substrate to allow for this elimination is given by the solution of an ordinary differential equation (ODE) which has not been solved before. We therefore present a new contemplation of this particular ODE and its solution, the zero-chirp geometry.

View Article and Find Full Text PDF

Polarization splitter-rotators (PSRs) are the key elements to realize on-chip polarization manipulation. Current PSRs on thin film lithium niobate (TFLN) rely on sub-micron gaps to realize mode separation, which increases the difficulties of lithography and etching. In this paper, a PSR on TFLN based on multimode interference (MMI) is demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!