Tuberculosis (TB) remains a public health crisis, requiring the urgent identification of new anti-mycobacterial drugs. We screened several organic and aqueous marine invertebrate extracts for their in vitro inhibitory activity against the causative organism, . Here, we report the results obtained for 54 marine invertebrate extracts. The chemical components of two of the extracts were dereplicated, using H NMR and HR-LCMS with GNPS molecular networking, and these extracts were further subjected to an activity-guided isolation process to purify the bioactive components. yielded heteronemin and was found to produce the bengamide class of compounds, of which bengamides P and Q were isolated, while a new derivative, bengamide S , was putatively identified and its structure predicted, based on the similarity of its MS/MS fragmentation pattern to those of other bengamides. The isolated bioactive metabolites and semi-pure fractions exhibited growth inhibitory activity, in the range <0.24 to 62.50 µg/mL. This study establishes the bengamides as potent antitubercular compounds, with the first report of whole-cell antitubercular activity of bengamides P and Q .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880526 | PMC |
http://dx.doi.org/10.3390/medicines9020009 | DOI Listing |
PLoS One
January 2025
School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America.
Identifying processes that promote coral reef recovery and resilience is crucial as ocean warming becomes more frequent and severe. Sexual reproduction is essential for the replenishment of coral populations and maintenance of genetic diversity; however, the ability for corals to reproduce may be impaired by marine heatwaves that cause coral bleaching. In 2014 and 2015, the Hawaiian Islands experienced coral bleaching with differential bleaching susceptibility in the species Montipora capitata, a dominant reef-building coral in the region.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.
Marine microbial communities colonizing the skin of invertebrates constitute the primary barrier between host and environment, potentially exerting beneficial, neutral, or detrimental effects on host fitness. To evaluate the potential contribution of epibiotic bacteria to the survival of early developmental stages of Octopus mimus, bacterial isolates were obtained from eggs, paralarvae, and adults. Their enzymatic activities were determined, and antibacterial properties were assessed against common marine pathogens.
View Article and Find Full Text PDFPLoS One
January 2025
Marine Animal Ecology, Wageningen University & Research, Wageningen, The Netherlands.
Restoration and artificial reefs can assist the recovery of degraded reefs but are limited in scalability and climate resilience. The Mineral Accretion Technique (MAT) subjects metal artificial reefs to a low-voltage electrical current, thereby creating a calcium-carbonate coating. It has been suggested that corals on MAT structures experience enhanced health and growth.
View Article and Find Full Text PDFSci Rep
January 2025
Animal Ecology and Biodiversity Laboratory (LEBA), Universidad Nacional Federico Villarreal, 15007, Lima, Peru.
Multi-species tests in bioassays offer a holistic view of the ecosystem's response to toxicity, as different species display varying sensitivities to pollutants. This research aimed to assess the ability of toxicity tests' to distinguish contamination levels, examine site-specific effects, and investigate seasonal variability. Using a multispecies approach (Nannochloropsis oceanica, Artemia franciscana, and Arbacia nigra), bioassays evaluated marine water quality from Callao Bay in Peru across four sampling areas (Naval School: PA1, Peruvian Marine Institute: PA2, Callao Pier: PA3, and San Lorenzo Island: PA4).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
Persistent shifts to undesired ecological states, such as shifts from coral to macroalgae, are becoming more common. This highlights the need to understand processes that can help restore affected ecosystems. Herbivory on coral reefs is widely recognized as a key interaction that can keep macroalgae from outcompeting coral.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!