DRM-Based Colour Photometric Stereo Using Diffuse-Specular Separation for Non-Lambertian Surfaces.

J Imaging

School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904, USA.

Published: February 2022

This paper presents a photometric stereo (PS) method based on the dichromatic reflectance model (DRM) using colour images. The proposed method estimates surface orientations for surfaces with non-Lambertian reflectance using diffuse-specular separation and contains two steps. The first step, referred to as diffuse-specular separation, initialises surface orientations in a specular invariant colour subspace and further separates the diffuse and specular components in the RGB space. In the second step, the surface orientations are refined by first initialising specular parameters via solving a log-linear regression problem owing to the separation and then fitting the DRM using Levenburg-Marquardt algorithm. Since reliable information from diffuse reflection free from specularities is adopted in the initialisations, the proposed method is robust and feasible with less observations. At pixels where dense non-Lambertian reflectances appear, signals from specularities are exploited to refine the surface orientations and the additionally acquired specular parameters are potentially valuable for more applications, such as digital relighting. The effectiveness of the newly proposed surface normal refinement step was evaluated and the accuracy in estimating surface orientations was enhanced around 30% on average by including this step. The proposed method was also proven effective in an experiment using synthetic input images comprised of twenty-four different reflectances of dielectric materals. A comparison with nine other PS methods on five representative datasets further prove the validity of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875588PMC
http://dx.doi.org/10.3390/jimaging8020040DOI Listing

Publication Analysis

Top Keywords

surface orientations
20
proposed method
16
diffuse-specular separation
12
photometric stereo
8
specular parameters
8
surface
6
method
5
proposed
5
orientations
5
drm-based colour
4

Similar Publications

Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores.

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Interfacial Water Orientation in Neutral Oxygen Catalysis for Reversible Ampere-scale Zinc-air Batteries.

Angew Chem Int Ed Engl

January 2025

Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.

The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!