Considering the current development of new nanostructured and complex materials and gels, it is critical to develop a sub-micro-scale sensitivity tool to quantify experimentally new parameters describing sub-microstructured porous systems. Diffusion NMR, based on the measurement of endogenous water's diffusion displacement, offers unique information on the structural features of materials and tissues. In this paper, we applied anomalous diffusion NMR protocols to quantify the subdiffusion of water and to measure, in an alternative, non-destructive and non-invasive modality, the fractal dimension d of systems characterized by micro and sub-micro geometrical structures. To this end, three highly heterogeneous porous-polymeric matrices were studied. All the three matrices composed of glycidylmethacrylate-divynilbenzene porous monoliths obtained through the High Internal Phase Emulsion technique were characterized by pores of approximately spherical symmetry, with diameters in the range of 2-10 μm. Pores were interconnected by a plurality of window holes present on pore walls, which were characterized by size coverings in the range of 0.5-2 μm. The walls were characterized by a different degree of surface roughness. Moreover, complementary techniques, namely Field Emission Scanning Electron Microscopy (FE-SEM) and dielectric spectroscopy, were used to corroborate the NMR results. The experimental results showed that the anomalous diffusion α parameter that quantifies subdiffusion and d = 2/ changed in parallel to the specific surface area S (or the surface roughness) of the porous matrices, showing a submicroscopic sensitivity. The results reported here suggest that the anomalous diffusion NMR method tested may be a valid experimental tool to corroborate theoretical and simulation results developed and performed for describing highly heterogeneous and complex systems. On the other hand, non-invasive and non-destructive anomalous subdiffusion NMR may be a useful tool to study the characteristic features of new highly heterogeneous nanostructured and complex functional materials and gels useful in cultural heritage applications, as well as scaffolds useful in tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871551 | PMC |
http://dx.doi.org/10.3390/gels8020095 | DOI Listing |
PLoS One
January 2025
Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Moscow Center for Advanced Studies, Moscow, Russia.
The properties of the hydrogen fluid at high pressures are still of interest to the scientific community. The experimentally unreachable dynamical properties could provide new insights into this field. In 2020 [Cheng et al.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
A coarse-grained model of a two-dimensional colloidal suspension was designed. The model was athermal and, in addition, a lattice approximation was introduced. It consisted of solvent (monomer) molecules, dimer molecules, and immobile impenetrable obstacles that introduced additional heterogeneity into the system.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!