Peripheral nerve injuries cause different degrees of nerve palsy and function loss. Due to the limitations of autografts, nerve tissue engineering (TE) scaffolds incorporated with various neurotrophic factors and cells have been investigated to promote nerve regeneration. However, the molecular mechanism is still poorly understood. In this study, we co-cultured Schwann cells (SCs) and rat adrenal pheochromocytoma (PC-12) cells on 50% degrees of methacryloyl substitution gelatin methacrylate (GelMA) scaffold. The SCs were encapsulated within the GelMA, and PC-12 cells were on the surface. A 5% GelMA was used as the co-culture scaffold since it better supports SCs proliferation, viability, and myelination and promotes higher neurotrophic factors secretion than 10% GelMA. In the co-culture, PC-12 cells demonstrated a higher cell proliferation rate and axonal extension than culturing without SCs, indicating that the secretion of neurotrophic factors from SCs can stimulate PC-12 growth and axonal outgrowth. The mRNA level for neurotrophic factors of SCs in 5% GelMA was further evaluated. We found significant upregulation when compared with a 2D culture, which suggested that this co-culture system could be a potential scaffold to investigate the mechanism of how SCs affect neuronal behaviors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871842 | PMC |
http://dx.doi.org/10.3390/gels8020084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!