A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultraviolet and Infrared Irradiations Sensing of Gel-Orange Dye Composite-Based Flexible Electrochemical Cells. | LitMetric

The flexible and shockproof rubber-based Al/OD-Gel/Cu electrochemical cell was designed, fabricated, and investigated for the detection of IR and UV irradiations. For this purpose, the transparent gel-orange dye composite was deposited on the porous rubber substrate between aluminum and copper electrodes. It was observed that the gel-orange dye composite was mechanically like a gel: soft and flexible. Electrically, this composite (gel-orange dye) forms a flexible electrolyte. It was found that the impedance of the samples under the effect of infrared irradiation decreased by 2.02 to 2.19 times on changing frequency from 100 Hz to 200 kHz. Accordingly, under the effect of ultraviolet irradiation, the impedance of the samples decreased by 1.23 to 1.45 times on increasing frequency from 100 Hz to 200 kHz. Under the effect of infrared irradiation up to 4000 W/m, the cell's open-circuit voltage increased by 1.59 times. The cell's open-circuit voltage also increased by 1.06 times under the effect of ultraviolet irradiation up to 200 uW/cm. The mechanism of the absorption of the infrared and ultraviolet irradiations by the OD-Gel composite has been discussed in detail. The fabricated flexible rubber substrate-based Al/OD-Gel/Cu electrochemical cells can be used as a prototype for the development of gel electronics-based devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871216PMC
http://dx.doi.org/10.3390/gels8020083DOI Listing

Publication Analysis

Top Keywords

gel-orange dye
16
electrochemical cells
8
al/od-gel/cu electrochemical
8
dye composite
8
impedance samples
8
infrared irradiation
8
frequency 100
8
100 200
8
200 khz
8
ultraviolet irradiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!