To improve the predictive value of in vitro experimentation, the use of 3D cell culture models, or organoids, is becoming increasingly popular. However, the current equipment of life science laboratories has been developed to deal with cell monolayers or cell suspensions. To handle 3D cell aggregates and organoids in a well-controlled manner, without causing structural damage or disturbing the function of interest, new instrumentation is needed. In particular, the precise and stable positioning in a cell bath with flow rates sufficient to characterize the kinetic responses to physiological or pharmacological stimuli can be a demanding task. Here, we present data that demonstrate that microgrippers are well suited to this task. The current version is able to work in aqueous solutions and was shown to position isolated pancreatic islets and 3D aggregates of insulin-secreting MIN6-cells. A stable hold required a gripping force of less than 30 μN and did not affect the cellular integrity. It was maintained even with high flow rates of the bath perfusion, and it was precise enough to permit the simultaneous microfluorimetric measurements and membrane potential measurements of the single cells within the islet through the use of patch-clamp electrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869445 | PMC |
http://dx.doi.org/10.3390/bioengineering9020067 | DOI Listing |
Background: Polysomnography (PSG) is resource-intensive but remains the gold standard for diagnosing Obstructive Sleep Apnea (OSA). We aimed to develop a screening tool to better allocate resources by identifying individuals at higher risk for OSA, overcoming limitations of current tools that may under-diagnose based on self-reported symptoms.
Methods: A total of 884 patients (490 diagnosed with OSA) were included, which was divided into the training, validation, and test sets.
ACS Chem Neurosci
January 2025
Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, AP-HM, North Hospital, Marseille, France.
Introduction: Water vapor thermal therapy (WVTT; REZUM™; Boston, USA) offers symptom relief with reduced risks of complications in patients with lower urinary tract symptoms (LUTS) related to benign prostatic obstruction (BPO). WVTT therapy has been validated in the pivotal study in men with smaller prostates (< 80 cc). Yet, its feasibility for larger prostates (≥ 80 cc) remains underexplored.
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
January 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for characterization of nasal products that may prove useful in examining intranasal delivery of powders. Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices.
View Article and Find Full Text PDFJ Fluid Mech
December 2024
Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Compiégne, France.
Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!