Stem cell-derived retinal pigment epithelium transplantation in age-related macular degeneration: recent advances and challenges.

Curr Opin Ophthalmol

Department of Ophthalmology and Biomedical Engineering, T Boone Pickens Professorship in Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA.

Published: May 2022

Purpose Of Review: Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss in the world with more than 80% of the prevalence accounted for by the nonneovascular (NNAMD) or 'dry' form of the disease. NNAMD does not have any definitive treatment once vision loss has ensued and presents a major unmet medical need. This review will highlight stem cell-based therapies that are a promising form of treatment for advanced NNAMD.

Recent Findings: In the past decade, clinical trials utilizing both induced pluripotent stem cell-derived RPE and human embryonic stem cell-derived RPE have been aggressively pursued as potential treatments of RPE loss and prevention of overlying neurosensory atrophy. While promising preliminary results demonstrating safety and potential efficacy have been published, new challenges have also been identified. These include selecting the most appropriate cell-based therapy, identifying and managing potential immune response as well as characterizing anatomic and functional efficacy. In this review, we will discuss some of these challenges in light of the available data from several early phase clinical trials and discuss the strategies that are being considered to further advance the field.

Summary: Cell-based therapies demonstrate promising potential to treat advanced stages of NNAMD. Several early phase clinical trials using both induced pluripotent stem cells (iPSC) and human embryonic stem cell derived (hESC) have demonstrated safety and preliminary signs of efficacy and highlighted remaining challenges which appear surmountable. These challenges include development of selection criteria for use of cell suspensions versus RPE sheets, especially in light of immunological properties of RPE that are intrinsic to the status of RPE differentiation in each of these cell formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ICU.0000000000000838DOI Listing

Publication Analysis

Top Keywords

stem cell-derived
12
clinical trials
12
age-related macular
8
macular degeneration
8
vision loss
8
review will
8
cell-based therapies
8
induced pluripotent
8
pluripotent stem
8
cell-derived rpe
8

Similar Publications

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

Synaptic protein expression in bipolar disorder patient-derived neurons implicates PSD-95 as a marker of lithium response.

Neuropharmacology

January 2025

Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA. Electronic address:

Bipolar disorder (BD) is a severe mental illness characterized by recurrent episodes of depression and mania. Lithium is the gold standard pharmacotherapy for BD, but outcomes are variable, and the relevant therapeutic mechanisms underlying successful treatment response remain uncertain. To identify synaptic markers of BD and lithium response, we measured the effects of lithium on induced pluripotent stem cell-derived neurons from BD patients and controls.

View Article and Find Full Text PDF

Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas.

Stem Cell Reports

January 2025

Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan. Electronic address:

We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1 ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays.

View Article and Find Full Text PDF

Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone.

Stem Cell Reports

January 2025

Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan. Electronic address:

Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!