Firstly, silver nanoparticles were synthesized by green synthesis method from extract. Nanocomposites containing newly synthesized methacrylate polymer, poly 2-(4-fluorophenyl)-2-oxoethyl-2-methylprop-2-enoate (PFPAMA) and Ag nanoparticles from in different mass ratios (1, 3, and 5 wt%) were synthesized using the hydrothermal method. The morphological and structural properties of the materials have been examined by SEM, FTIR, UV, TGA, and XRD techniques. The activation energies () related to thermal decomposition of the nanocomposites were estimated by the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods by using non-isothermal TGA experiments. The thermal stability, glass transition temperature (), and the thermal decomposition activation energy () values of nanocomposites were increased by increasing the Ag nanoparticles amount on the composite. The dielectric constant ('), the dielectric loss factor () and ac conductivity of neat PFPAMA and nanocomposites were also measured for the frequency range of 100 Hz to 2 kHz at 25 °C. It was seen that the frequency dependence of the dielectric constant and dielectric loss factor decreased with increasing frequency. The biological activities of nanocomposites against gram-positive (), gram-negative () bacteria and yeast were also tested. The antibacterial effect increased against both bacterial species as the amount of Ag nanoparticles from in the nanocomposites increased. In addition, the wound healing properties of nanocomposites were investigated by the scratch wound test.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2022.2046986 | DOI Listing |
Sci Rep
December 2024
Faculty of Science, Botany Department, Mansoura University, Mansoura, 35516, Egypt.
In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran. Electronic address:
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Delhi-110007, New Delhi, India.
Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Paper Technology, Indian Institute of Technology Roorkee, Department of Paper Technology, IIT Roorkee, Saharanpur, 247001, INDIA.
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.
View Article and Find Full Text PDFInorg Chem
December 2024
Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
The photocatalytic conversion of carbon dioxide (CO) into "liquid sunshine" methanol (CHOH) using semiconductor catalysts has garnered significant attention. Increasing the number of effective electrons and regulating reaction pathways is the key to improving the activity and selectivity of CHOH. Due to the electron transport properties of semiconductor heterojunctions and reduced graphene oxide (rGO), a CoS/CoS-rGO nanocomposite was constructed and applied to the photocatalytic reduction of CO to CHOH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!