Where is evolution fastest? The biotic interactions hypothesis proposes that greater species richness creates more ecological opportunity, driving faster evolution at low latitudes, whereas the 'empty niches' hypothesis proposes that ecological opportunity is greater where diversity is low, spurring faster evolution at high latitudes. We tested these contrasting predictions by analysing rates of beak evolution for a global dataset of 1141 avian sister species. Rates of beak size evolution are similar across latitudes, with some evidence that beak shape evolves faster in the temperate zone, consistent with the empty niches hypothesis. The empty niches hypothesis is further supported by a meta-analysis showing that rates of trait evolution and recent speciation are generally faster in the temperate zone, whereas rates of molecular evolution are slightly faster in the tropics. Our results suggest that drivers of evolutionary diversification are either similar across latitudes or more potent in the temperate zone, thus calling into question multiple hypotheses that invoke faster tropical evolution to explain the latitudinal diversity gradient.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13726DOI Listing

Publication Analysis

Top Keywords

temperate zone
12
evolution
9
trait evolution
8
hypothesis proposes
8
ecological opportunity
8
faster evolution
8
rates beak
8
faster temperate
8
empty niches
8
niches hypothesis
8

Similar Publications

Grasses can sustain soil functions despite nutrient depletion, which can have serious consequences for soil processes and ecosystem services. This paper summarizes the results of the long-term experiment (1995-2024) carried out in within a temperate climate zone, focusing on the productivity of natural and managed grasslands; their succession changes over time, and so do the effects on soil chemical properties, and soil organic carbon (SOC) sequestration. The results indicated that two land uses-abandoned land (AL) and grassland fertilized with mineral fertilizers (MGf)-can be effectively applied to prevent soil degradation.

View Article and Find Full Text PDF

Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered (Franch.) Pax Endemic to China.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

(Franch.) Pax is an endangered species endemic to China, mainly scattered in the Qinling-Daba Mountains. The genetic diversity of 17 natural populations were analyzed by nuclear DNA (nDNA) and chloroplast DNA (cpDNA) to explore the driving forces for its microevolution.

View Article and Find Full Text PDF

This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw milk were collected from 160 pastures in three climate zones of China from October to November 2020. The results indicated the level of AFB1 and AFM1 ranged from 51.

View Article and Find Full Text PDF

Background: Since its resurgence in 2017, Yellow fever (YF) outbreaks have continued to occur in Nigeria despite routine immunization and the implementation of several reactive mass vaccinations. Nigeria, Africa's most populous endemic country, is considered a high-priority country for implementing the End Yellow fever Epidemics strategy.

Methods: This retrospective analysis described the epidemiological profile, trends, and factors associated with Yellow fever viral positivity in Nigeria.

View Article and Find Full Text PDF

Microphytobenthos spatio-temporal dynamics across an intertidal gradient in a tropical estuary using Sentinel-2 imagery.

Sci Total Environ

February 2025

Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real 11510, Cádiz, Spain; Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, 11510 Cadiz, Spain.

Intertidal mudflats are among the most productive coastal ecosystems, largely because of the activity of the photosynthetic microbial community on the sediment surface, known as microphytobenthos (MPB). While the dynamics of MPB have been extensively studied in temperate estuaries, there is limited research in tropical estuaries. To address this knowledge gap, we investigated the spatio-temporal dynamics of MPB in the Nicoya Gulf (Costa Rica), one of the world's most productive tropical estuaries, using Sentinel-2 images at 10 m spatial resolution from 2018 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!