AI Article Synopsis

  • A variety of new chromium complexes with carbene- and phosphine-based ligands have been created, including species with halides, nitrides, and dinitrogens.
  • Some of these complexes demonstrate effective catalytic activity for converting dinitrogen into ammonia and hydrazine under atmospheric pressure.
  • This research marks the first instance of using chromium as a catalyst for dinitrogen conversion to ammonia and hydrazine in mild reaction conditions.

Article Abstract

A series of chromium-halide, -nitride, and -dinitrogen complexes bearing carbene- and phosphine-based PCP-type pincer ligands has been newly prepared, and some of them are found to work as effective catalysts to reduce dinitrogen under atmospheric pressure, whereby up to 11.60 equiv. of ammonia and 2.52 equiv. of hydrazine (16.6 equiv. of fixed N atom) are produced based on the chromium atom. To the best of our knowledge, this is the first successful example of chromium-catalyzed conversion of dinitrogen to ammonia and hydrazine under mild reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202200557DOI Listing

Publication Analysis

Top Keywords

dinitrogen ammonia
8
ammonia hydrazine
8
complexes bearing
8
pcp-type pincer
8
pincer ligands
8
catalytic reduction
4
reduction dinitrogen
4
hydrazine chromium
4
chromium complexes
4
bearing pcp-type
4

Similar Publications

Construction of N-E bonds via Lewis acid-promoted functionalization of chromium-dinitrogen complexes.

Nat Commun

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.

Direct conversion of dinitrogen (N) into N-containing compounds beyond ammonia under ambient conditions remains a longstanding challenge. Herein, we present a Lewis acid-promoted strategy for diverse nitrogen-element bonds formation from N using chromium dinitrogen complex [Cp*(IPrMe)Cr(N)]K (1). With the help of Lewis acids AlMe and BF, we successfully trap a series of fleeting diazenido intermediates and synthesize value-added compounds containing N-B, N-Ge, and N-P bonds with 3 d metals, offering a method for isolating unstable intermediates.

View Article and Find Full Text PDF

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

The complete conversion of dinitrogen to ammonia mediated by a side-on N-bound carbene-beryllium complex, [NHC-Be(η-N)] has been studied considering both the symmetric and unsymmetric pathways. -heterocyclic carbenes complexed with Be(η-N) moieties were considered substrates in our study. We found that two mechanistic pathways were possible for the reduction of dinitrogen to form ammonia.

View Article and Find Full Text PDF

Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism.

View Article and Find Full Text PDF

Altering the edge sites of 2D MXenes for electrochemical dinitrogen reduction reaction (ENRR) is widely reported, whereas activation of its relatively inert basal planes is neglected. Herein, the activation and the optimization of the basal planes of TiCT (T = *F, *O, and *OH) MXenes toward enhanced ENRR to ammonia is reported. The balanced surface functionalization in TiCT regulates the ENRR kinetics by regulating the potential of zero charge (E) and the electrochemical work function ( ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!