This work presents the first comprehensive investigation of natural organic matter (NOM) fraction removal using ceramic membranes in South Africa. The rate of removal of bulk NOM (measured as UV and DOC % removal), the biodegradable dissolved organic carbon (BDOC) fraction, polarity-based fractions, and fluorescent dissolved organic carbon (FDOM) fractions was investigated from water abstracted from drinking water treatment plants (WTPs) in South Africa. Further, mechanisms of ceramic membrane fouling by waters of South Africa were studied. Ceramic membranes removed more than 80% DOC from samples from coastal WTPs, whereas for inland plants, the removal was between 60% and 75% of DOC. FDOM was removed to at least 80% regardless of the site of the plant. The BDOC removal by the ceramic membranes was above 85%. The hydrophobic fraction was the most amenable to removal by ceramic membranes regardless of the site of sample abstraction (above 60% for all sites). The freshness index (β:α) correlated strongly to UV removal (R = 0.96), thus UV removal can serve as a proxy for the susceptibility to removal of such class of NOM by ceramic membranes. This investigation demonstrated that ceramic membranes could be a valuable technology if integrated into the existing WTPs. PRACTITIONER POINTS: The removal of bulk parameters by ceramic membrane was greater than unit conventional processes used in all the sampled water treatment plants. The hydrophobic polarity-based fraction of NOM was the most amenable to removal by ceramic membranes regardless of the site of the WTP. Polarity-based fractions, aromaticity, and initial DOC had a combined influence on the removal of organic matter by ceramic membranes as explained by principal component three.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.10693 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.
The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.
Discov Nano
January 2025
Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Mechanical Engineering, Mount Vernon Nazarene University, 800 Martinsburg Rd, Mt Vernon, OH 43050, USA.
The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!