Despite the demonstrated effectiveness of nano-materials for drug delivery to the brain, a comprehensive understanding of their transport processes across the blood brain barrier (BBB) remains undefined. This multidisciplinary study aimed to gain an insight into the transport processes across BBB, focusing on the transcytosis of liposomes and the impact of liposomal pH-sensitivity. Glutathione-PEGylated pH-sensitive (GSH-PEG-pSL) and non pH-sensitive liposomes (GSH-PEG-L) were fluorescently labelled with rhodamine-DOPE and calcein, both impermeable to biomembranes. Following exposure to brain microvascular endothelial cells (hBMECs), the key functional component of the BBB, intracellular trafficking were evaluated by confocal live-cell imaging. The exocytosed liposomes, including naturally-occurring extracellular vesicles (EVs), were collected using differential centrifugation and and characterised regarding the EV yield, morphology and EVs origin using nanoparticle tracking analysis, transmission electron microscopy and flow cytometry. The transcytosis of liposomes through a verified BBB model comprising of hBMECs monolayer was also quantified. GSH-PEG-L was initially retained in the endo-lysosomes before exocytosed while packed in EVs of different sizes (<100 ​nm to >1 ​μm) while GSH-PEG-pSL underwent endosome escape with less degree of exocytosis with more fluorescence remaining in the cytoplasm. Compared with the untreated, hBMECs treated with GSH-PEG-L increased the yield of nano-EV and medium-EV by 7.9-fold and 4.6-fold, respectively. Conversely, GSH-pSL-treated cells produced 2.9-fold more nano-EVs but 2-fold less medium-EVs than the control cells. These vesicles were CD144-positive confirming their endothelial cell-origin. GSH-PEG-L demonstrated 2-fold higher efficiencies than GSH-PEG-pSL to cross the BBB model via exocytosis. Taken together, GSH-PEG-L might utilize EV secretion pathway to achieve transcytosis across brain endothelial cells of the BBB while liposomal pH-sensitivity favors cytoplasmic delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841812PMC
http://dx.doi.org/10.1016/j.mtbio.2022.100212DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
liposomal ph-sensitivity
12
extracellular vesicles
8
brain endothelial
8
impact liposomal
8
transport processes
8
transcytosis liposomes
8
bbb model
8
bbb
6
brain
5

Similar Publications

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

The Bartonella genus of bacteria encompasses ubiquitous species, some of which are pathogenic in humans and animals. Bartonella henselae, the causative agent of Cat Scratch disease, is responsible for a large portion of human Bartonella infections. These bacteria can grow outside of cells, replicate in erythrocytes and invade endothelial and monocytic cells.

View Article and Find Full Text PDF

pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.

View Article and Find Full Text PDF

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!