There is a known variance in the incidence and anatomical site of tibial stress fractures among infantry recruits and athletes who train according to established uniform training programs. To better understand the biomechanical basis for this variance, we conducted axial strain measurements using instrumented bone staples affixed in the medial cortex, aligned along the long axis of the tibia at the level of the mid and distal third of the bone in four male subjects. Strain measurements were made during treadmill walking, treadmill running, drop jumps from a 45 cm height onto a force plate and serial vertical jumps on a force plate. Significance levels for the main effects of location, type of activity and their interaction were determined by quasi-parametric methodologies. Compared to walking, running and vertical jumping peak axial tensile strain (με) was 1.94 (p = 0.009) and 3.92 times (p < 0.001) higher, respectively. Peak axial compression strain (με) values were found to be greater at the distal third than at the mid tibia for walking, running and vertical jumping (PR = 1.95, p-value<0.001). Peak axial compression and tension strains varied significantly between the subjects (all with p < 0.001), after controlling for strain gauge location and activity type. The study findings help explain the variance in the anatomical location of tibial stress fractures among participants doing the same uniform training and offers evidence of individual biomechanical susceptibility to tibial stress fracture. The study data can provide guidance when developing a generalized finite element model for mechanical tibial loading. For subject specific decisions, individualized musculoskeletal finite element models may be necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851073 | PMC |
http://dx.doi.org/10.1016/j.bonr.2022.101170 | DOI Listing |
Extracell Vesicles Circ Nucl Acids
November 2024
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland.
Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry.
View Article and Find Full Text PDFWearable Technol
December 2024
College of Engineering, University of Michigan, Ann Arbor, MI, USA.
Internal and external rotation of the shoulder is often challenging to quantify in the clinic. Existing technologies, such as motion capture, can be expensive or require significant time to setup, collect data, and process and analyze the data. Other methods may rely on surveys or analog tools, which are subject to interpretation.
View Article and Find Full Text PDFHeliyon
January 2025
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indiana University - Bloomington, 800 E Kirkwood Ave, Bloomington, IN 47405, USA.
Chiral plasmonic crystals with 5-fold symmetries were synthesized from Au icosahedra, decahedra, and pentatwinned nanorods, unraveling the effects of seed twinning and aspect ratio on chiral overgrowth directed by L-glutathione. The influence of seed size on the overgrowth from pentatwinned nanorods was also studied, giving insight into the role volumetric strain plays in chiral crystal formation. Single particle reconstructions were obtained using electron tomography, and optical simulations on the measured structures verify their optical chirality.
View Article and Find Full Text PDFExp Clin Transplant
December 2024
>From the School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objectives: Bloodstream infection is one of the main causes of death in hematopoietic stem cell transplant recipients. Acinetobacter baumannii is a bacteria associated with bloodstream infection and subsequent death from high antibiotic resistance in this group of patients. We evaluated bloodstream infections of Acinetobacter baumannii in hematopoietic stem cell transplant recipients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!