Objective: In the present study, we aimed to evaluate the prognostic value of PET/CT-derived radiomic features for patients with B-cell lymphoma (BCL), who were treated with CD19/CD22 dual-targeted chimeric antigen receptor (CAR) T cells. Moreover, we explored the relationship between baseline radiomic features and the occurrence probability of cytokine release syndrome (CRS).
Methods: A total of 24 BCL patients who received F-FDG PET/CT before CAR T-cell infusion were enrolled in the present study. Radiomic features from PET and CT images were extracted using LIFEx software, and the least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful predictive features of progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic curves, Cox proportional hazards model, and Kaplan-Meier curves were conducted to assess the potential prognostic value.
Results: Contrast extracted from neighbourhood grey-level different matrix (NGLDM) was an independent predictor of PFS (HR = 15.16, p = 0.023). MYC and BCL2 double-expressor (DE) was of prognostic significance for PFS (HR = 7.02, p = 0.047) and OS (HR = 10.37, p = 0.041). The combination of NGLDM_Contrast and DE yielded three risk groups with zero (n = 7), one (n = 11), or two (n = 6) factors (p < 0.0001 and p = 0.0004, for PFS and OS), respectively. The PFS was 85.7%, 63.6%, and 0%, respectively, and the OS was 100%, 90.9%, and 16.7%, respectively. Moreover, there was no significant association between PET/CT variables and CRS.
Conclusions: In conclusion, radiomic features extracted from baseline F-FDG PET/CT images in combination with genomic factors could predict the survival outcomes of BCL patients receiving CAR T-cell therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858981 | PMC |
http://dx.doi.org/10.3389/fonc.2022.834288 | DOI Listing |
Cardiovasc Diagn Ther
December 2024
The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China.
Background And Objective: Radiomics is an emerging technology that facilitates the quantitative analysis of multi-modal cardiac magnetic resonance imaging (MRI). This study aims to introduce a standardized workflow for applying radiomics to non-ischemic cardiomyopathies, enabling clinicians to comprehensively understand and implement this technology in clinical practice.
Methods: A computerized literature search (up to August 1, 2024) was conducted using PubMed to identify relevant studies on the roles and workflows of radiomics in non-ischemic cardiomyopathy.
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
Sci Rep
January 2025
Department of Computer Engineering, Inha University, Incheon, Republic of Korea.
The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.). Electronic address:
Rationale And Objectives: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).
Methods: 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!