Birdsong is typically seen as a long-range signal functioning in mate attraction and territory defense. Among birds, the zebra finch is the prime model organism in bioacoustics, yet almost exclusively studied in the lab. In the wild, however, zebra finch song differs strikingly from songbirds commonly studied in the wild as zebra finch males sing most after mating and in the absence of territoriality. Using data from the wild, we here provide an ecological context for a wealth of laboratory studies. By integrating calibrated sound recordings, sound transmission experiments and social ecology of zebra finches in the wild with insights from hearing physiology we show that wild zebra finch song is a very short-range signal with an audible range of about nine meters and that even the louder distance calls do not carry much farther (up to about fourteen meters). These integrated findings provide an ecological context for the interpretation of laboratory studies of this species and indicate that the vocal communication distance of the main laboratory species for avian acoustics contrasts strikingly with songbirds that use their song as a long-range advertisement signal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857932 | PMC |
http://dx.doi.org/10.1093/beheco/arab107 | DOI Listing |
PLoS One
January 2025
Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
Despite the wide use of zebra finches as an animal model to study vocal learning and production, little is known about impacts on their welfare caused by routine experimental manipulations such as changing their social context. Here we conduct a post-hoc analysis of singing rate, an indicator of positive welfare, to gain insights into stress caused by social isolation, a common experimental manipulation. We find that isolation in an unfamiliar environment reduces singing rate for several days, indicating the presence of an acute stressor.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
Social and sensory experiences across the lifespan can shape social interactions, however, experiencedependent plasticity is widely studied within discrete life stages. In the socially monogamous zebra finch, in which females use learned vocal signals to identify individuals and form long-lasting pair bonds, developmental exposure to song is key for females to show species-typical song perception and preferences. While adult mating experience can still lead to pair-bonding and song preference learning even in birds with limited previous song exposure ("song-naïve"), whether similarities in adult behavioral plasticity between normally-reared and song-naïve females reflect convergent patterns of neural activity is unknown.
View Article and Find Full Text PDFBiol Lett
January 2025
Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
Noise pollution is on the rise worldwide. An unresolved issue regarding the mitigation of noise pollution is whether and at which timescales animals may adapt to noise pollution. Here, we tested whether continuous highway noise exposure perinatally and during juvenile development increased noise tolerance in a songbird, the zebra finch ().
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
: Transcriptome assembly and functional annotation are essential in understanding gene expression and biological function. Nevertheless, many existing pipelines lack the flexibility to integrate both short- and long-read sequencing data or fail to provide a complete, customizable workflow for transcriptome analysis, particularly for non-model organisms. : We present TrAnnoScope, a transcriptome analysis pipeline designed to process Illumina short-read and PacBio long-read data.
View Article and Find Full Text PDFEcol Lett
January 2025
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!