An assessment of 27 mutant tomato lines from four countries (Germany, USA, Russia, Bulgaria) was carried out for resistance to five strains under conditions of the South of Russia. Five strains of the fungus were isolated from naturally infected plants selected in five agroclimatic zones of Krasnodar Krai: Central - strain 1, Western - strain 6, North - strain 11, South Foothill - strain 12, Chernomorskaya - strain 13. The assessment was carried out in the field during 2018-2020, in a greenhouse and under the laboratory conditions three times for each studied strain. In the field, the plants were treated every year with a spore suspension of strain 1. Mutant lines obtained from the United States: 868, 663, 533, 544 and 898 showed the greatest resistance to in 2018-2020, the lesion of which averaged 4.5-8.0% over three years. 13 mutant lines: 17, 40, 688, 722 (Germany), 311, 394, 418, 542, 728, 743, 917 (USA), 322 (Russia), 159 (Bulgaria) showed average resistance with the development of the disease 10.2-24.9% over three years of the research. Mutant lines 743, 663, 868, 544 obtained from the USA possessed relatively high resistance to all the studied strains under greenhouse conditions; moreover, no signs of damage with strains 1 and 11 were observed on Mo 868, signs of damage by strain 11 of were not observed on Mo 743. Under laboratory conditions, mutant lines 663, 743, 868, obtained from the United States, were most resistant. Mo 663 showed resistance to strains 1, 13; line 743 - to strains 11, 12; line 868 - to strains 1, 11. There was a predominantly positive correlation between the results of field, greenhouse and laboratory assessments, which indicates a strong connection between them and the possibility of using these methods to assess the resistance of tomato samples to independently of each other.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848014 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2021.09.066 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China.
Jasmonic acid (JA) is crucial for plant stress responses, which rely on intercellular jasmonate transport. However, JA transporters have not been fully identified, especially in tomato ( L.).
View Article and Find Full Text PDFHortic Res
January 2025
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
Branched-chain amino acids (BCAAs) are essential amino acids in tomato () required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato () gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.
View Article and Find Full Text PDFPlant Sci
January 2025
Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China. Electronic address:
Amino acids are crucial nutrients for growth in crops. In this study, we found an amino acid transporter-like 13 (OsATL13), that coordinately determined rice yield and quality. OsATL13 was primarily expressed in the root and panicle, its protein was localized on plasma membrane, and it principally transported phenylalanine and methionine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!