AI Article Synopsis

Article Abstract

Background: Chemotherapy can induce premature ovarian insufficiency (POI). POI causes multiple sequelae and is currently incurable. As shown in our previous studies, systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) home to ovaries with chemotherapy-induced POI and subsequently reduce ovarian injury and improve ovarian function in rats with POI. However, the cellular mechanisms that direct the migration and homing of hAD-MSCs to ovaries with chemotherapy-induced POI are incompletely understood. This study investigated the role of the SDF-1/CXCR4 axis in the migration and homing of systemically transplanted hAD-MSCs to ovaries with chemotherapy-induced POI and its relevant downstream signalling pathways.

Methods: CXCR4 expression in hAD-MSCs was assessed using Western blotting and immunofluorescence staining. hAD-MSC migration was tested using Transwell migration assays. SDF-1 levels were detected using ELISA. Seventy-two female SD rats were randomly divided into the control, POI, hAD-MSCs and hAD-MSCs + AMD3100 groups. Cyclophosphamide was used to establish rat POI models. For inhibitor treatment, hAD-MSCs were pretreated with AMD3100 before transplantation. PKH26-labeled hAD-MSCs were injected into the tail vein of POI rats 24 h after chemotherapy. After hAD-MSC transplantation, the homing of hAD-MSCs to ovaries and ovarian function and pathological changes were examined. We further investigated the molecular mechanisms by detecting the PI3K/Akt and ERK1/2 signalling pathways.

Results: hAD-MSCs expressed CXCR4. SDF-1 induced hAD-MSC migration in vitro. SDF-1 levels in ovaries and serum were significantly increased in rats with chemotherapy-induced POI, and ovaries with POI induced the homing of hAD-MSCs expressing CXCR4. Blocking the SDF-1/CXCR4 axis with AMD3100 significantly reduced the number of hAD-MSCs homing to ovaries with POI and further reduced their efficacy in POI treatment. The binding of SDF-1 to CXCR4 activated the PI3K/Akt signalling pathway, and LY294002 significantly inhibited hAD-MSC migration induced by SDF-1 in vitro. Moreover, inhibition of the PI3K/Akt signalling pathway significantly reduced the number of systemically transplanted hAD-MSCs homing to chemotherapy-induced ovaries in rats with POI.

Conclusions: SDF-1/CXCR4 axis partially mediates the migration and homing of systemically transplanted hAD-MSCs to the ovaries of rats with chemotherapy-induced POI, and the PI3K/Akt signalling pathway might be involved in the migration and homing of hAD-MSCs mediated by the SDF-1/CXCR4 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867754PMC
http://dx.doi.org/10.1186/s13287-022-02759-6DOI Listing

Publication Analysis

Top Keywords

had-mscs ovaries
24
sdf-1/cxcr4 axis
20
systemically transplanted
20
chemotherapy-induced poi
20
migration homing
16
homing had-mscs
16
had-mscs
15
poi
15
homing systemically
12
ovaries rats
12

Similar Publications

Premature ovarian insufficiency (POI) can cause multiple sequelae and is currently incurable. Mesenchymal stem cell (MSC) transplantation might provide an effective treatment method for POI. However, the clinical application of systemic MSC transplantation is limited by the low efficiency of cell homing to target tissue , including systemic MSC transplantation for POI treatment.

View Article and Find Full Text PDF

Background: Chemotherapy can induce premature ovarian insufficiency (POI). POI causes multiple sequelae and is currently incurable. As shown in our previous studies, systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) home to ovaries with chemotherapy-induced POI and subsequently reduce ovarian injury and improve ovarian function in rats with POI.

View Article and Find Full Text PDF

Effects of Human Amnion-Derived Mesenchymal Stem Cell (hAD-MSC) Transplantation In Situ on Primary Ovarian Insufficiency in SD Rats.

Reprod Sci

July 2020

Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.

Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation can repair ovarian injury and improve ovarian function in rats with chemotherapy-induced primary ovarian insufficiency (POI). However, ensuring that stem cells home to the ovary to improve their effects on ovarian injury is challenging. This research aimed to directly inject ovarian tissue with hAD-MSCs and improve the homing of stem cells to the ovary.

View Article and Find Full Text PDF

Background: Chemotherapy can induce premature ovarian insufficiency (POI) and reduce fertility in young female patients. Currently, there is no effective therapy for POI. Human amnion-derived mesenchymal stem cells (hAD-MSCs) may be a promising seed cell for regenerative medicine.

View Article and Find Full Text PDF

Background: Human amnion-derived mesenchymal stem cells (hAD-MSCs) have the features of mesenchymal stem cells (MSCs). Low-intensity pulsed ultrasound (LIPUS) can promote the expression of various growth factors and anti-inflammatory molecules that are necessary to keep the follicle growing and to reduce granulosa cell (GC) apoptosis in the ovary. This study aims to explore the effects of LIPUS-pretreated hAD-MSC transplantation on chemotherapy-induced primary ovarian insufficiency (POI) in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!