Reduced neutralization of SARS-CoV-2 Omicron variant by BNT162b2 vaccinees' sera: a preliminary evaluation.

Emerg Microbes Infect

Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco, L. Sacco University Hospital, Milan, Italy.

Published: December 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920392PMC
http://dx.doi.org/10.1080/22221751.2022.2045878DOI Listing

Publication Analysis

Top Keywords

reduced neutralization
4
neutralization sars-cov-2
4
sars-cov-2 omicron
4
omicron variant
4
variant bnt162b2
4
bnt162b2 vaccinees'
4
vaccinees' sera
4
sera preliminary
4
preliminary evaluation
4
reduced
1

Similar Publications

Galectin-1-Induced Tumor Associated Macrophages Repress Antitumor Immunity in Hepatocellular Carcinoma Through Recruitment of Tregs.

Adv Sci (Weinh)

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs.

View Article and Find Full Text PDF

Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were mixed with the pattern recognition receptor (PRR) agonist FLICd as adjuvants and formulated with a micro-hydrogel adjuvant into PCV2 and PRV bivalent subunit vaccines. Twenty pigs, aged 30-35 days, were divided into groups A (received bivalent subunit vaccine) and B (received bivalent subunit vaccines with recombinant FLICd adjuvant), as well as C (non-vaccinated challenge control) and D (blank control).

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and children. mRNA vaccines based on the lipopolyplex (LPP) platform have been previously reported, but they remain unapplied in RSV vaccine development. In this study, we developed a novel LPP-delivered mRNA vaccine that expresses the respiratory syncytial virus prefusion protein (RSV pre-F) to evaluate its immunogenicity and protective effect in a mouse model.

View Article and Find Full Text PDF

The Development of a Novel Broad-Spectrum Influenza Polypeptide Vaccine Based on Multi-Epitope Tandem Sequences.

Vaccines (Basel)

January 2025

NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

Background: Polypeptide vaccines have the potential to improve immune responses by targeting conserved and weakly immunogenic regions in antigens. This study aimed to identify and evaluate the efficacy of a novel influenza universal vaccine candidate consisting of multiple polypeptides derived from highly conserved regions of influenza virus proteins hemagglutinin (HA), neuraminidase (NA), and matrix protein 2 (M2).

Methods: Immunoinformatics tools were used to screen conserved epitopes from different influenza virus subtypes (H1N1, H3N2, H5N1, H7N9, H9N2, and IBV).

View Article and Find Full Text PDF

Jet Injection of Naked mRNA Encoding the RBD of the SARS-CoV-2 Spike Protein Induces a High Level of a Specific Immune Response in Mice.

Vaccines (Basel)

January 2025

State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia.

Although mRNA vaccines encapsulated in lipid nanoparticles (LNPs) have demonstrated a safety profile with minimal serious adverse events in clinical trials, there is opportunity to further reduce mRNA reactogenicity. The development of naked mRNA vaccines could improve vaccine tolerability. Naked nucleic acid delivery using the jet injection method may be a solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!