Recombinant adenovirus vectors enable highly efficient gene delivery and As a result, they are widely used in gene therapy, vaccination, and anticancer applications. We have previously developed the AdZ vector system, which uses recombineering to permit high-throughput cloning of transgenes into Adenovirus vectors, simplifies alteration of the vector backbone, and enables rapid recovery of infectious virus, even if a transgene is incompatible with vector replication. In this study, we adapt this vector system to enable high-throughput cloning of sequences for CRISPR/Cas9 editing. Vectors were optimized to ensure efficient cloning, and high editing efficiency using spCas9 and single guide RNA (sgRNA) sequences in a single vector. Using a multiplicity of infection of 50, knockout efficiencies of up to 80% could be achieved with a single sgRNA. Vectors were further enhanced by altering the spCas9 sequence to match that of SniperCas9, which has reduced off-target activity, but maintains on-target efficiency, and by applying modifications to the sgRNA sequence that significantly enhance editing efficiency. Thus, the AdZ-CRISPR vectors offer highly efficient knockout, even in hard to transfect cells, and enables large-scale CRISPR/Cas9 projects to be undertaken easily and quickly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2021.120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!