Exciton Dynamics of a Diketo-Pyrrolopyrrole Core for All Low-Lying Electronic Excited States Using Density Functional Theory-Based Methods.

J Chem Theory Comput

ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia.

Published: March 2022

Ab initio treatments of interexcited state internal conversion (IC) are more often than not missing from exciton dynamic descriptions, because of their inherent complexity. Here, we define "interexcited state IC" as a same-spin nonradiative transition between states and , where ≠ ≠ 0. Competing directly with multiexciton processes such as singlet fission or triplet photoupconversion, inclusion of this mechanism in the narrative of molecular photophysics would allow for strategic synthesis of chromophores for more efficient photon-harvesting applications. Herein, we present a robust formalism which can model these rates using density functional theory (DFT)-based methods within the Franck-Condon and Herzberg-Teller regime. Using an unsubstituted diketo-pyrrolopyrrole (DPP) core as a case study, we illustrate the exciton dynamics along the first four excited states for both singlet and triplet manifolds, showing ultrafast same-spin transfer mechanisms due to all excited states, excluding the first triplet level, being in close energetic proximity (within 0.8 eV of each other). The resulting electron same-spin rates outcompete the electron spin-flipping intersystem crossing (ISC) rates, with excitons firmly obeying Kasha's rule as they cascade down from the high-lying excited states toward the lower states. Furthermore, we calculated that only the first singlet excited state displayed a reasonable probability of triplet exciton generation, of ∼40%, with a near-zero chance of the exciton reverting to the singlet manifold once the electron-hole pair are of parallel spin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.2c00070DOI Listing

Publication Analysis

Top Keywords

excited states
16
exciton dynamics
8
density functional
8
states
6
exciton
5
excited
5
dynamics diketo-pyrrolopyrrole
4
diketo-pyrrolopyrrole core
4
core low-lying
4
low-lying electronic
4

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.

View Article and Find Full Text PDF

Transducers used in acoustic logging while drilling (ALWD) must be mounted on a drill collar, and their radiation performance is dependent on the employed mounting method. Herein, the complex transmitting voltage response of a while-drilling (WD) monopole acoustic source was calculated through finite-element harmonic-response analysis. Subsequently, the acoustic pressure waveform radiated by the source driven by a half-sine excitation voltage signal was calculated using the complex transmitting voltage response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!