The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unprecedented event requiring frequent adaptation to changing clinical circumstances. Convalescent immune plasma (CIP) is a promising treatment that can be mobilized rapidly in a pandemic setting. We tested whether administration of SARS-CoV-2 CIP at hospital admission could reduce the rate of ICU transfer or 28-day mortality or alter levels of specific antibody responses before and after CIP infusion. In a single-arm phase II study, patients >18 years-old with respiratory symptoms with confirmed COVID-19 infection who were admitted to a non-ICU bed were administered two units of CIP within 72 h of admission. Levels of SARS-CoV-2 detected by PCR in the respiratory tract and circulating anti-SARS-CoV-2 antibody titers were sequentially measured before and after CIP transfusion. Twenty-nine patients were transfused high titer CIP and 48 contemporaneous comparable controls were identified. All classes of antibodies to the three SARS-CoV-2 target proteins were significantly increased at days 7 and 14 post-transfusion compared with baseline ( < 0.01). Anti-nucleocapsid IgA levels were reduced at day 28, suggesting that the initial rise may have been due to the contribution of CIP. The groups were well-balanced, without statistically significant differences in demographics or co-morbidities or use of remdesivir or dexamethasone. In participants transfused with CIP, the rate of ICU transfer was 13.8% compared to 27.1% for controls with a hazard ratio 0.506 (95% CI 0.165-1.554), and 28-day mortality was 6.9% compared to 10.4% for controls, hazard ratio 0.640 (95% CI 0.124-3.298). Transfusion of high-titer CIP to non-critically ill patients early after admission with COVID-19 respiratory disease was associated with significantly increased anti-SARS-CoV-2 specific antibodies (compared to baseline) and a non-significant reduction in ICU transfer and death (compared to controls). This prospective phase II trial provides a suggestion that the antiviral effects of CIP from early in the COVID-19 pandemic may delay progression to critical illness and death in specific patient populations. This study informs the optimal timing and potential population of use for CIP in COVID-19, particularly in settings without access to other interventions, or in planning for future coronavirus pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865433PMC
http://dx.doi.org/10.1128/spectrum.02560-21DOI Listing

Publication Analysis

Top Keywords

cip
6
convalescent plasma
4
plasma preventing
4
preventing critical
4
critical illness
4
illness covid-19
4
covid-19 phase
4
phase trial
4
trial immune
4
immune profile
4

Similar Publications

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Optogenetic systems using photosensitive proteins and chemically induced dimerization/proximity (CID/CIP) approaches enabled by chemical dimerizers (also termed molecular glues), are powerful tools to elucidate the dynamics of biological systems and to dissect complex biological regulatory networks. Here, we report a versatile chemo-optogenetic system using modular, photoswitchable molecular glues (sMGs) that can undergo repeated cycles of optical control to switch protein function on and off. We use molecular dynamics (MD) simulations to rationally design the sMGs and further expand their scope by incorporating different photoswitches, resulting in sMGs with customizable properties.

View Article and Find Full Text PDF

With the growing threat of organic pollutants in water bodies, there is an urgent need for sustainable and efficient water decontamination methods. This research focused on synthesizing a novel Z-scheme ternary heterostructure composed of graphene oxide (GO)-mediated polyaniline (PANI) with α-FeO and investigated its potential in brilliant green (BrG) and ciprofloxacin (CIP) degradation tests under visible light. The ternary composite demonstrated exceptional photocatalytic activity, with the optimized 10%PANI/GO/α-FeO (10PGF) photocatalyst achieving 99.

View Article and Find Full Text PDF

Monitoring Antibiotic Pollutants in Water Using Electrochemical Techniques: A Detailed Review.

Crit Rev Anal Chem

January 2025

Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India.

This review article examines the application of electrochemical methods for detecting four prevalent antibiotics - azithromycin (AZM), amoxicillin (AMX), tetracycline (TC), and ciprofloxacin (CIP) - in environmental monitoring. Although, antibiotics are essential to contemporary treatment, their widespread usage has contaminated the environment and given rise to antibiotic resistance. Electrochemical techniques offer sensitive, rapid, and cost-effective solutions for monitoring these antibiotics, addressing the limitations of traditional methods.

View Article and Find Full Text PDF

Background/objectives: Urinary tract infections (UTI) represent a highly frequent and debilitating disease. Immunoactive prophylaxis, such as the polyvalent bacterial whole-cell-based sublingual vaccine MV140, have been developed to avoid antibiotic use. However, the effectiveness of this tool in the Portuguese population is still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!