A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrolytic Enzymes as Potentiators of Antimicrobials against an Inter-Kingdom Biofilm Model. | LitMetric

Biofilms are recalcitrant to antimicrobials, partly due to the barrier effect of their matrix. The use of hydrolytic enzymes capable to degrade matrix constituents has been proposed as an alternative strategy against biofilm-related infections. This study aimed to determine whether hydrolytic enzymes could potentiate the activity of antimicrobials against hard-to-treat interkingdom biofilms comprising two bacteria and one fungus. We studied the activity of a series of enzymes alone or in combination, followed or not by antimicrobial treatment, against single-, dual- or three-species biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans, by measuring their residual biomass or culturable cells. Two hydrolytic enzymes, subtilisin A and lyticase, were identified as the most effective to reduce the biomass of C. albicans biofilm. When targeting interkingdom biofilms, subtilisin A alone was the most effective enzyme to reduce biomass of all biofilms, followed by lyticase combined with an enzymatic cocktail composed of cellulase, denarase, and dispersin B that proved previously active against bacterial biofilms. The subsequent incubation with antimicrobials further reduced the biomass. Enzymes alone did not reduce culturable cells in most cases and did not interfere with the cidal effects of antimicrobials. Therefore, this work highlights the potential interest of pre-exposing interkingdom biofilms to hydrolytic enzymes to reduce their biomass besides the number of culturable cells, which was not achieved when using antimicrobials alone. Biofilms are recalcitrant to antimicrobial treatments. This problem is even more critical when dealing with polymicrobial, interkingdom biofilms, including both bacteria and fungi, as these microorganisms cooperate to strengthen the biofilm and produce a complex matrix. Here, we demonstrate that the protease subtilisin A used alone, or a cocktail containing lyticase, cellulase, denarase, and dispersin B markedly reduce the biomass of interkingdom biofilms and cooperate with antimicrobials to act upon these recalcitrant forms of infection. This work may open perspectives for the development of novel adjuvant therapies against biofilm-related infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865531PMC
http://dx.doi.org/10.1128/spectrum.02589-21DOI Listing

Publication Analysis

Top Keywords

hydrolytic enzymes
20
interkingdom biofilms
20
reduce biomass
16
culturable cells
12
biofilms
10
biofilms recalcitrant
8
biofilm-related infections
8
cellulase denarase
8
denarase dispersin
8
enzymes reduce
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!