Previous research showed that frailty can influence autonomic nervous system and consequently heart rate response to physical activities, which can ultimately influence the homeostatic state among older adults. While most studies have focused on resting state heart rate characteristics or heart rate monitoring without controlling for physical activities, the objective of the current study was to classify pre-frail/frail vs non-frail older adults using heart rate response to physical activity (heart rate dynamics). Eighty-eight older adults (≥65 years) were recruited and stratified into frailty groups based on the five-component Fried frailty phenotype. Groups consisted of 27 non-frail (age = 78.80±7.23) and 61 pre-frail/frail (age = 80.63±8.07) individuals. Participants performed a normal speed walking as the physical task, while heart rate was measured using a wearable electrocardiogram recorder. After creating heart rate time series, a long short-term memory model was used to classify participants into frailty groups. In 5-fold cross validation evaluation, the long short-term memory model could classify the two above-mentioned frailty classes with a sensitivity, specificity, F1-score, and accuracy of 83.0%, 80.0%, 87.0%, and 82.0%, respectively. These findings showed that heart rate dynamics classification using long short-term memory without any feature engineering may provide an accurate and objective marker for frailty screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9342861PMC
http://dx.doi.org/10.1109/JBHI.2022.3152538DOI Listing

Publication Analysis

Top Keywords

heart rate
36
rate dynamics
12
older adults
12
long short-term
12
short-term memory
12
heart
9
rate
9
rate response
8
response physical
8
physical activities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!