A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GPCR systems pharmacology: a different perspective on the development of biased therapeutics. | LitMetric

AI Article Synopsis

  • GPCRs are a major target for drugs, making up about one-third of FDA-approved medications, and they engage with various transducers like G proteins and β-arrestins.
  • Biased agonism is a key concept where certain ligands selectively activate specific pathways, which could lead to better drug designs that minimize side effects.
  • Despite its promise, only one biased GPCR drug has been approved, highlighting a need for a better understanding of how these pathways work together and a call for a systems pharmacology approach to improve drug development.

Article Abstract

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and are the target of approximately one-third of all Food and Drug Administration (FDA)-approved pharmaceutical drugs. GPCRs interact with many transducers, such as heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. Recent experiments have demonstrated that some ligands can activate distinct effector proteins over others, a phenomenon termed "biased agonism." These discoveries have raised the potential of developing drugs which preferentially activate therapeutic signaling pathways over those that lead to deleterious side effects. However, to date, only one biased GPCR therapeutic has received FDA approval and many others have either failed to meet their specified primary end points and or demonstrate superiority over currently available treatments. In addition, there is a lack of understanding regarding how biased agonism measured at a GPCR leads to specific downstream physiological responses. Here, we briefly summarize the history and current status of biased agonism at GPCRs and suggest adoption of a "systems pharmacology" approach upon which to develop GPCR-targeted drugs that demonstrate heightened therapeutic efficacy with improved side effect profiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037395PMC
http://dx.doi.org/10.1152/ajpcell.00449.2021DOI Listing

Publication Analysis

Top Keywords

biased agonism
8
gpcr
4
gpcr systems
4
systems pharmacology
4
pharmacology perspective
4
perspective development
4
biased
4
development biased
4
biased therapeutics
4
therapeutics protein-coupled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!