Sudden death syndrome (SDS), caused by , causes substantial yield losses in soybean. However, relationships between soybean yield and components of disease progress, including time of disease onset, are poorly understood. Individual soybean plants (2018) and quadrats (2016 to 2018) were monitored in commercial fields and experimental plots in Iowa to quantify the impact of SDS foliar symptom onset on final SDS intensity, soybean yield components, and yield. The date when SDS foliar symptoms were first detected (onset time) and progress of SDS incidence and severity were recorded weekly. Individual soybean plants and quadrats were harvested at the end of each season. Beta-regression showed that date of SDS onset had a consistent and stable effect on final disease intensity both at individual plant and quadrat levels. The slope of the relationship between date of SDS onset and final SDS severity was common across all field sites and years. Weighted linear regression revealed that SDS onset explained 60 to 83% of the variation in number of pods, number of seeds, and total seed weight in individual plants, and 94 to 97% of the variation in seed yield in quadrats. Soybean yield damage functions (slopes) indicated that for each day SDS onset was delayed, soybean yield increased by 30.5 to 31.3 kg/ha. This new quantitative information improves understanding of the impact of SDS on final disease intensity and soybean yield. Further experiments are needed to determine how this relationship is affected by site-specific factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-07-21-1551-RE | DOI Listing |
This study aimed to investigate the impact of dietary soybean oil and probiotics on goat meat quality, total conjugated linoleic acids (TCLA) concentration, and nutritional quality indicators of goats. Thirty-six male crossbred goats (Anglo-Nubian♂× Thai native♀), weighing 18.3 ± 2.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China.
The soybean mosaic disease-caused by the (SMV)-significantly impacts soybean quality and yield. Among its various strains, SMV-SC7 is prevalent in China. Therefore, rapid and accurate diagnosis is deemed critical to mitigate the spread of SMV-SC7.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:
Soybean protein isolate (SPI) exhibits limited functional properties in processing applications due to environmental stressors such as pH, salt ion, and temperature. The present study was devoted to exploring the non-covalent assembly of SPI with chitosan (CS), glucan (GL) and sodium alginate (SA) under different pH conditions. At a fixed mixing ratio (1:1), the phase behavior, protein solubility, and surface hydrophobicity (H) of the resulting protein-polysaccharide complexes (PPCs) exhibited great differences due to the diversity of polysaccharide charge density and structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!