Synaptic damage is one of the most prevalent pathophysiological responses to traumatic CNS injury and underlies much of the associated cognitive dysfunction; however, it is poorly understood. The D-amino acid, D-serine, serves as the primary co-agonist at synaptic NMDA receptors (NDMARs) and is a critical mediator of NMDAR-dependent transmission and synaptic plasticity. In physiological conditions, D-serine is produced and released by neurons from the enzymatic conversion of L-serine by serine racemase (SRR). However, under inflammatory conditions, glial cells become a major source of D-serine. Here, we report that D-serine synthesized by reactive glia plays a critical role in synaptic damage after traumatic brain injury (TBI) and identify the therapeutic potential of inhibiting glial D-serine release though the transporter Slc1a4 (ASCT1). Furthermore, using cell-specific genetic strategies and pharmacology, we demonstrate that TBI-induced synaptic damage and memory impairment requires D-serine synthesis and release from both reactive astrocytes and microglia. Analysis of the murine cortex and acutely resected human TBI brain also show increased SRR and Slc1a4 levels. Together, these findings support a novel role for glial D-serine in acute pathological dysfunction following brain trauma, whereby these reactive cells provide the excess co-agonist levels necessary to initiate NMDAR-mediated synaptic damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305835PMC
http://dx.doi.org/10.1002/glia.24161DOI Listing

Publication Analysis

Top Keywords

synaptic damage
20
glial d-serine
12
d-serine
8
d-serine release
8
brain injury
8
synaptic
7
damage
5
inhibition glial
4
release rescues
4
rescues synaptic
4

Similar Publications

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Glucose metabolism impairment in major depressive disorder.

Brain Res Bull

January 2025

First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China. Electronic address:

Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Background: The driving mechanisms of structural brain alterations in the earliest stages of Alzheimer's disease (AD) are not well understood. Previous heterogeneous findings in preclinical AD, including subtle atrophy and also increased grey matter (GM) volume, underscore the need for further exploration. This study uses an extensive fluid biomarkers panel to identify pathological drivers behind longitudinal GM changes in cognitively unimpaired (CU) adults.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Background: mRNAs are required to progress cellular processes such as synaptic plasticity and memory formation. Processing bodies (P-bodies) are storage units for mRNAs located at dendritic translation sites, so these mRNAs can participate in synaptic plasticity immediately when needed. P-bodies consist of 3 main proteins: DDX6, 4E-T, and LSM14A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!