The progression of atherosclerotic plaque is accelerated by death of foam cells during the development of the plaque. There are several forms of foam cell death, such as autophagy and ferroptosis forms of cell death together are commonly predominant. Therefore, it is particularly important to study the crosstalk between various forms of cell death in atheroscler and ferroptosis. Although there is a dominant form of cell death that plays a role in the disease, motic plaques. Nuclear factor NF-E2-related factor (Nrf2) has been considered as a major regulator of antioxidant in previous studies, but recent studies have revealed that insufficient cellular autophagy can turn off Nrf2-mediated antioxidant defense while initiating Nrf2-manipulated iron deposition and lipid peroxidation, leading to the development of iron ferroptosis. The present experiment aimed to explain the regulatory mechanism between autophagy and ferroptosis through Nrf2. In this experiment, differentiated human THP-1 macrophages were used, which were treated with ox-LDL into foam cells with the addition of the autophagy inhibitor chloroquine (CQ), the inhibitor of Nrf2 (ML385), the promoter of Nrf2 (t-BHQ), and the inhibitor of ferroptosis (Liproxstatin-1), and the expression levels of autophagy-related proteins p62 and LC3, as well as Nrf2 and ferroptosis-related proteins xCT and GPX4 by WB, foam cell survival by CCK8, and intracellular reactive oxygen levels by Flow cytometry analysis and fluorescence microscopy. The effect of autophagy through Nrf2 on ferroptosis in foam cells was determined. The results revealed that insufficient autophagy in CQ-induced foam cells could lead to foam cell death in atherosclerotic plaques, and the cause of cell death was that insufficient autophagy in foam cells turned off the positive effect of Nfr2 antioxidant, initiated the negative effect of Nrf2 to promote intracellular reactive oxygen species production, and this negative effect promoted ferroptosis in foam cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-021-04347-3 | DOI Listing |
Am J Chin Med
January 2025
Department of Pathophysiology.
The accumulation of aging cells significantly contributes to chronic inflammatory diseases such as atherosclerosis. Human carotid artery single-cell sequencing has shown that large numbers of aging foam cells are present in the plaques of human patients. Berberine (BBR) has been shown to inhibit cell senescence, however, the mechanisms involved in its treatment of atherosclerotic senescence have not yet been determined.
View Article and Find Full Text PDFJ Appl Toxicol
January 2025
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
Sulcardine sulfate (Sul) is a novel antiarrhythmic agent blocking multiple channels and exhibits unique pharmacological properties such as lower APD-dependent prolongation and reduced arrhythmia risk. Sul is currently in Phase III clinical trials, yet studies on its long-term toxicological profile and potential target organs remain unexplored. This study investigated the related toxicity of Sul in Sprague Dawley (SD) rats through repeated oral administration for 26 weeks, followed by a 4-week recovery period.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Atherosclerosis, resulting from chronic inflammation of the arterial wall, serves as the underlying cause of multiple major cardiovascular diseases. Current anti-inflammatory therapies often exhibit limited and unsatisfactory efficacy. To address this, we have designed a selenium-doped copper formate (Cuf-Se) nanozyme for the treatment of atherosclerosis, which possesses superoxide dismutase (SOD) and glutathione peroxidase (GPx)-like activities.
View Article and Find Full Text PDFTheranostics
January 2025
Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
Vulnerable plaques, which are high-risk features of atherosclerosis, constitute critical elements in the disease's progression due to their formation and rupture. Macrophages and macrophage-derived foam cells are pivotal in inducing vulnerability within atherosclerotic plaques. Thus, understanding macrophage contributions to vulnerable plaques is essential for advancing the comprehension of atherosclerosis and devising novel therapeutic and diagnostic strategies.
View Article and Find Full Text PDFACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!