Climate Change Vulnerability Assessment for the Rondo Dwarf Galago in Coastal Forests, Tanzania.

Environ Manage

Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, University of Dar es Salaam, P.O. Box 2329, Dar es Salaam, Tanzania.

Published: January 2023

Negative effects of climate change on organisms and their habitats pose significant conservation challenges especially for species already under siege from other threats like habitat loss, pollution and diseases. This study assessed the extent to which the Rondo dwarf galago (Paragalago rondoensis), an endangered primate in the coastal forests in eastern Tanzania is threatened by climate change. Past and projected temperature and precipitation records from Tanzania Meteorological Authority were overlaid with P. rondoensis distribution range to assess the species exposure to climate extremes. Traits predisposing it to climate change were also obtained from published literature and experts on the organism's biology to determine its sensitivity. The P. rondoensis vulnerability to climate change was obtained by feeding exposure and sensitivity data into Natureserve's Climate Change Vulnerability Index (CCVI) software. Results indicated that most of Rondo galago's habitat and distribution range will be exposed to a temperature increase of 1 to 1.3 °C by 2050, which if combined with other threats, is likely to further endanger the species survival. Due to its diet specialization on insects, which are moisture-dependent, any extreme decrease in humidity will reduce its diet availability thereby threatening the species further. Moreover, Rondo galago's limited habitats and distribution range in the East African tropical coastal forests, raises the species threat level. Rondo galago's conservation should be enhanced through creation of corridors to facilitate its possible shifts to conducive and safer habitats in the event of extreme weather. Climate change aspects should also be integrated into the species conservation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-022-01605-yDOI Listing

Publication Analysis

Top Keywords

climate change
28
coastal forests
12
distribution range
12
rondo galago's
12
climate
8
change vulnerability
8
rondo dwarf
8
dwarf galago
8
change
6
species
6

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Boreal forests are heading for an open state.

Proc Natl Acad Sci U S A

January 2025

Environmental Sciences Department, Wageningen University & Research, Wageningen 6708 PB, The Netherlands.

The boreal forest biome is warming four times faster than the global average. Changes so far are moderate, but time lags in responses may transiently maintain forest states which are no longer supported by current environmental conditions. Here, we explore whether tree cover dynamics hint at the state to which the biome may be shifting.

View Article and Find Full Text PDF

Climate change could amplify weak synchrony in large marine ecosystems.

Proc Natl Acad Sci U S A

January 2025

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.

Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.

View Article and Find Full Text PDF

The 1831 CE mystery eruption identified as Zavaritskii caldera, Simushir Island (Kurils).

Proc Natl Acad Sci U S A

January 2025

Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.

Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.

View Article and Find Full Text PDF

Integrating climate and physical constraints into assessments of net capture from direct air capture facilities.

Proc Natl Acad Sci U S A

January 2025

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!