Transcranial direct current stimulation (tDCS) is a noninvasive form of electrical brain stimulation popularly used to augment the effects of working memory (WM) training. Although success has been mixed, some studies report enhancements in WM performance persisting days, weeks, or even months that are actually more reminiscent of consolidation effects typically observed in the long-term memory (LTM) domain, rather than WM improvements per se. Although tDCS has been often reported to enhance both WM and LTM, these effects have never been directly compared within the same study. However, given their considerable neural and behavioral overlap, this is a timely comparison to make. This study reports results from a multisession intervention in older adults comparing active and sham tDCS over the left dorsolateral pFC during training on both an n-back WM task and a word learning LTM task. We found strong and robust effects on LTM, but mixed effects on WM that only emerged for those with lower baseline ability. Importantly, mediation analyses showed an indirect effect of tDCS on WM that was mediated by improvements in consolidation. We conclude that tDCS over the left dorsolateral pFC can be used as an effective intervention to foster long-term learning and memory consolidation in aging, which can manifest in performance improvements across multiple memory domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836784 | PMC |
http://dx.doi.org/10.1162/jocn_a_01839 | DOI Listing |
Braz J Psychiatry
January 2025
Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, SP, Brazil.
Objective: Post-stroke depression (PSD) affects approximately 40% of stroke survivors, with cognitive deficits being frequently observed. Transcranial Direct Current Stimulation (tDCS) has shown promise in improving cognitive performance in stroke patients. We explored the effects of tDCS on cognitive performance in PSD.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.
View Article and Find Full Text PDFEur Child Adolesc Psychiatry
January 2025
Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany.
Transcranial direct current stimulation (tDCS) remains experimental for many psychiatric disorders in adults. Particularly in childhood, there is limited research on the evidence for the efficacy and mechanisms of action of tDCS on the developing brain. The objective of this review is to identify published experimental studies to examine the efficacy and mechanisms of tDCS in children with psychiatric or developmental disorders in early (prepubertal) childhood (aged under 10 years).
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
School of Clinical Medicine, Qilu Medical University, Zibo, Shandong, China.
Background: Alzheimer's disease (AD) is a neurodegenerative disease. At present, there are currently no drugs that can cure AD.
Objective: A number of empirical studies have shown that transcranial direct current stimulation (tDCS) may be used to treat cognitive abnormalities in patients with AD.
Neuroimage
January 2025
School of Computing, Tokyo Institute of Technology, Yokohama, Japan; ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan. Electronic address:
Transcranial direct current stimulation (tDCS) is a potential method for improving verbal function by stimulating Broca's area. Previous studies have shown the effectiveness of using functional magnetic resonance imaging (fMRI) to optimize the stimulation site, but it is unclear whether similar optimization can be achieved using scalp electroencephalography (EEG). Here, we investigated whether tDCS targeting a brain area identified by EEG can improve verbalization performance during a picture-naming task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!