A highly stereoselective asymmetric total synthesis of (-)-jimenezin (), a potent anticancer acetogenin, was efficiently completed with the key feature being a sequential intramolecular amide enolate alkylation (IAEA). Our investigation to probe the origin of the complete stereoselectivity in the second IAEA step to form the conformationally flexible tetrahydrofuran with perfect stereocontrol identified the presence of the oxygen atom in the adjacent tetrahydropyran ring to be crucial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.2c00196 | DOI Listing |
J Org Chem
January 2025
Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
A new stereoselective [4+2] annulation method for constructing tetracyclic indolines by reacting indoles with bicyclic N-substituted cyclobutanes has been developed. Using Sc(OTf) as a catalyst, a series of tetracyclic indolines with four continued stereogenic carbon centers have been obtained in ≤86% yields as single diastereomers. This reaction offers an accessible way for the rapid construction of the core structures of biologically active natural products like paucidirinine, deethylibophyllidine, and ibophyllidine.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Osaka University: Osaka Daigaku, Department of Applied Chemistry, JAPAN.
Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Department of Chemistry, 1 Tsinghua Yuan, 100084, Beijing, CHINA.
Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
The asymmetric Tsuji-Trost reaction has been extensively studied due to its importance in establishing stereogenic centers, often adjacent to an -olefin moiety in organic molecules. The generally preferential formation of chiral -olefin products is believed to result from the thermodynamically more stable -π-allylpalladium intermediate. The rapid associative π-σ-π isomerization makes it challenging to synthesize chiral -olefin products via the transient -π-allylpalladium intermediate.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
Ketoreductases (KRs) are domains in the reductive loops of type I polyketide synthases (PKSs) and are responsible for the majority of stereocenters in reduced polyketides. Although the highly stereoselective reduction of ACP-bound β-ketothioester intermediates by KRs is crucial for the overall functioning of PKSs, the substrate-dependent stereoselectivity of KRs is a factor that is not yet fully understood, especially for KR domains in late PKS modules that act on biosynthetic precursors with complex polyketidic moieties. We present studies on the three KR domains FosKR7, PlmKR6, and EryKR6 from the biosynthetic pathways of fostriecin, phoslactomycin, and erythromycin by in vitro assays using close surrogates of the octaketidic FosKR7 biosynthetic precursor, complex derivatives and a diketide in the form of their biomimetic -acetylcysteamine thioesters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!