A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-Dimensional Cobalt Sulfide/Iron-Nitrogen-Carbon Holey Sheets with Improved Durability for Oxygen Electrocatalysis. | LitMetric

Two-Dimensional Cobalt Sulfide/Iron-Nitrogen-Carbon Holey Sheets with Improved Durability for Oxygen Electrocatalysis.

ACS Appl Mater Interfaces

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P.R. China.

Published: March 2022

Transition-metal sulfide as a promising bifunctional oxygen electrocatalyst alternative to scarce platinum-group metals has attracted much attention, but it suffers activity loss over time owing to poor structural/compositional stability during catalysis. Herein, we report a self-template method for preparing a two-dimensional cobalt sulfide holey sheet superstructure with hierarchical porosity followed by the encapsulation of thin iron-nitrogen-carbon as a protective layer. The iron-nitrogen-carbon layer to some degree precludes the phase transition of cobalt sulfide underneath and preserves the structural integrity during catalysis, therefore rendering an exceptional durability in terms of no obvious activity loss after 10,000 cycles of the accelerated durability test. It also noticeably enhances the intrinsic activity of cobalt sulfide and does not influence its exposure into the electrolyte, resulting in showing an extraordinary electrochemical performance in terms of a potential difference of 0.69 V for the overall oxygen redox. A rechargeable zinc-air battery assembled by a cobalt sulfide/iron-nitrogen-carbon air cathode delivers approximately 4.2 times higher power density than that without an iron-nitrogen-carbon layer and stably operates for 300 h with a high voltaic efficiency. This work gives a facile and effective strategy for improving the long-term durability of transition-metal sulfide electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c00067DOI Listing

Publication Analysis

Top Keywords

cobalt sulfide
12
two-dimensional cobalt
8
cobalt sulfide/iron-nitrogen-carbon
8
transition-metal sulfide
8
activity loss
8
iron-nitrogen-carbon layer
8
sulfide
5
sulfide/iron-nitrogen-carbon holey
4
holey sheets
4
sheets improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!