We describe a catalytic system for the conversion of carboxylic acids into alcohols using substoichiometric zinc acetate and -methyl morpholine, in combination with phenylsilane as the nominal terminal reductant. Reaction monitoring by F NMR spectroscopy demonstrates that the reaction proceeds by mutual activation of the carboxylic acid and silane through the generation of silyl ester intermediates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc03396d | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
Rationale: This study presents a case of hemoglobin M disease (HMD), a rare inherited disorder characterized by persistent cyanosis and hypoxemia, observed across 3 generations within a single family. The diagnosis of HMD poses significant challenges, particularly in asymptomatic individuals, due to its rarity and the subtlety of its symptoms. Notably, there is a scarcity of reports on methemoglobinemia in pediatric populations, which further complicates early detection and intervention.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America.
Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.
View Article and Find Full Text PDFChemSusChem
January 2025
Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.
Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!