High-quality biomarkers that detect emergent graft damage and/or rejection after solid-organ transplantation offer new opportunities to improve post-transplant monitoring, allow early therapeutic intervention and facilitate personalized patient management. Donor-derived cell-free DNA (DD-cfDNA) is a particularly exciting minimally invasive biomarker because it has the potential to be quantitative, time-sensitive and cost-effective. Increased DD-cfDNA has been associated with graft damage and rejection episodes. Efforts are underway to further improve sensitivity and specificity. This review summarizes the procedures used to process and detect DD-cfDNA, measurement of DD-cfDNA in clinical transplantation, approaches for improving sensitivity and specificity and long-term prospects as a transplant biomarker to supplement traditional organ monitoring and invasive biopsies.

Download full-text PDF

Source
http://dx.doi.org/10.2217/bmm-2021-0968DOI Listing

Publication Analysis

Top Keywords

cell-free dna
8
transplant biomarker
8
graft damage
8
sensitivity specificity
8
dna solid-organ
4
solid-organ transplant
4
biomarker technologies
4
technologies approaches
4
approaches high-quality
4
high-quality biomarkers
4

Similar Publications

Concordance of non-invasive plasma cell-free DNA with invasive diagnostics for diagnosis of invasive fungal disease.

Clin Infect Dis

January 2025

Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.

Background: Mold plasma cell-free DNA (cfDNA) PCR is a promising non-invasive diagnostic modality for early diagnosis of invasive mold disease (IMD) in immunocompromised patients. Although mold cfDNA PCR has been shown to be highly accurate, the value of invasive procedures to collect specimens for conventional fungal diagnostics following plasma cfDNA testing remains unclear.

Methods: This retrospective single-center cohort study included patients with mold plasma cfDNA PCR performed 7 days before or 2 days after invasive specimen collection.

View Article and Find Full Text PDF

The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.

View Article and Find Full Text PDF

In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation.

View Article and Find Full Text PDF

Objectives: Noninvasive prenatal testing (NIPT) to screen for fetal aneuploidies by analysing cell-free DNA in maternal plasma is available to pregnant women worldwide. In the future, the scope of NIPT could potentially be expanded to the prediction of adverse pregnancy outcomes. The objective of this study was to assess and compare the preferences of pregnant women and obstetric healthcare professionals on this new test purpose of NIPT.

View Article and Find Full Text PDF

Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!