Actin is a major structural component of the cytoskeleton in eukaryotic cells, including fungi, plants, and animals, and exists not only in the cytoplasm as cytoskeleton but also in the nucleus. Recently, we developed a novel actin probe, β-actin-EGFP fusion protein, which exhibited similar monomeric to filamentous ratio as that of endogenous actin, in contrast to the widely used EGFP-β-actin fusion protein that over-assembles in cells. Unexpectedly, this novel probe visualized an interconnected meshwork of slightly curved beam-like bundles of actin filaments in the nucleus of U2OS cells. These structures were not labeled with rhodamine phalloidin, Lifeact-EGFP or anti-actin antibodies. In addition, immunofluorescence staining and expression of cofilin-EGFP revealed that this nuclear actin structures contained cofilin. We named these actin filaments as phalloidin-negative intranuclear (PHANIN) actin filaments. Since PHANIN actin filaments could not be detected by general detection methods for actin filaments, we propose that PHANIN actin filaments are different from previously reported nuclear actin structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gtc.12930 | DOI Listing |
J Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
CNR Institute of Neuroscience, Vedano al Lambro, Italy.
Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India.
Background: F-actin plays crucial roles in establishment and maintenance of synapses including post synaptic density organization, facilitation of vesicle trafficking, anchoring of postsynaptic receptors, and involvement in translational machinery. Proteomic analysis of actin-interacting proteins revealed the interaction of PSD-95 with actin in synaptosomes from brain cortex of APP/PS1 mice. PSD-95 functions as a critical scaffold for the assembly of neurotransmitter receptors at the synapse, playing a pivotal role in regulating synaptic strength and plasticity.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFAndrology
January 2025
Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina.
Background: Endocannabinoids like anandamide (AEA), among other lipids, are recognized signaling molecules that participate in reproductive events.
Objectives: Our aims were to characterize orphan G protein-coupled receptor (GPR55) presence; investigate GPR55 activation by AEA and determine GPR55 role in the bovine sperm function.
Materials And Methods: GPR55 presence was assessed by immunocytochemistry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!