The environmental quality and toxicity of soil from some selected informal e-waste sites in West Africa was assessed on PLHC-1 liver cells. In addition, toxicity mechanisms such as apoptosis, necrosis and necroptosis were analysed in order to determine the effect of the actual chemical mixture present in the e-waste soil matrix. The investigation revealed that although e-waste soil extracts (polar and non-polar) and elutriates were significantly cytotoxic at the tested concentration (16 mg soil EQ/ml), PLHC-1 cell viability was not reduced below 50%. The non-polar extracts were more toxic compared to polar extracts and elutriates. The cytotoxic potency of soil from the informal e-waste-recycling sites ranged in this order: Alaba > Godome-Kouhounou > Agbogblosie. The study revealed that all e-waste soil extracts and elutriates induced significant (P < 0.01) PLHC-1 cell death by apoptosis and necrosis; however, cell death by apoptosis was higher compared to that by necrosis. The results indicated that except for non-polar extracts (N4, B4 and G4) from open burning areas that induced significant (P < 0.01) PLHC-1 cell death by necroptosis, other extracts and elutriates could not cause cell death by necroptosis. The study has demonstrated that soils from the Alaba e-waste site in Lagos could be more toxic than soils from Godome-Kouhounou (Cotonou) and Agbogblosie (Accra) e-waste sites and further highlighted open burning as an informal e-waste-handling method with greater negative impact on soil quality in the e-waste sites. The study emphasizes the urgent need for regulatory agencies to introduce regular residue-monitoring programmes in order to forestall the adverse effects of soil pollution episodes in the e-waste sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-021-09717-4 | DOI Listing |
Environ Monit Assess
January 2025
Environmental Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium. Electronic address:
Electronic waste (e-waste) dismantling and dumpsite processes are recognized as significant sources of chlorinated paraffin (CP) exposure. This study aims to investigate the environmental occurrence and distribution of polychlorinated alkanes (PCAs-C), specifically in soil and outdoor dust samples collected from e-waste dumpsites and automobile dismantling and resale sites in Nigeria. The results revealed a widespread occurrence of PCAs across all sampled locations.
View Article and Find Full Text PDFToxicology
December 2024
Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.
View Article and Find Full Text PDFToxicology
November 2024
School of Chemical Engineering, Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China.
In today's fast-paced technological era, multifaceted technological advancements in our contemporary lifestyle are surging the use of electronic devices, which are significantly piling e-waste and posing environmental concerns. This stock of e-waste is expected to keep rising up to 50 mt year. Formal recycling of such humongous waste is a major challenge, especially in developing nations.
View Article and Find Full Text PDFEnviron Geochem Health
November 2024
University of Leicester, University Road, Leicester, LE1 7RH, UK.
Although phytoremediation is more economical when compared with traditional physical and chemical soil remediation methods, it remains very expensive when considering the substantial area of the contaminated field. If the quantity of harvested residues can be reduced after each phytoremediation cycle, the practicability and commercial implementation of this environment friendly method can be improved. In this study, cadmium excretion on the leaf surface of Festuca arundinacea was evaluated under various blue and red light conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!