Nowadays, mesenchymal stem cells (MSCs) are the most widely used cell sources for bone regenerative medicine. Electrospun polyacrylonitrile (PAN)-based scaffolds play an important role in bone tissue engineering due to their good mechanical properties, which could be enhanced by the presence of nanoparticles such as nanoclay. This study evaluated the effect of different concentrations of nanoclay in surface characteristic properties of PAN-based electrospun nanofiber scaffolds and the osteogenic differentiation ability of adipose-derived mesenchymal stem cells (AD-MSCs). After electrospinning nanofibers, their structure were assessed through some characterization tests. Then AD-MSCs isolation and characterization were done, and the cell attachment and the biocompatibility were determined. Finally, osteogenic differentiation-related markers, genes, and proteins were studied. Clay-PAN25% electrospun nanofiber scaffold could support attachment, proliferation, and osteogenic differentiation of AD-MSCs better than other groups. Also, nanoclay could enhance the properties of PAN-based scaffolds, such as fiber diameter, topography, surface charge, hydrophilicity, roughness, and degradation, as well as osteogenic differentiation of cells. As a result, Clay-PAN25% with the highest concentration of nanoclay was found as a promising biodegradable and cost-effective scaffold for osteogenic differentiation of AD-MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842619PMC
http://dx.doi.org/10.22037/ijpr.2021.115119.15208DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
20
mesenchymal stem
12
stem cells
12
topography surface
8
pan-based scaffolds
8
properties pan-based
8
electrospun nanofiber
8
differentiation ad-mscs
8
osteogenic
6
differentiation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!