A multiparametric fluorescence assay for screening aptamer-protein interactions based on microbeads.

Sci Rep

Environment and Natural Sciences, Institute of Biotechnology, Brandenburg Technical University Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany.

Published: February 2022

For improving aptamer-ligand binding we have developed a screening system that defines optimal binding buffer composition. Using multiplex assays, one buffer system is needed which guarantees the specific binding of all aptamers. We investigated nine peer-reviewed DNA aptamers. Non-specific binding of aptamers is an obstacle. To address this, we investigated 16 proteins as specificity controls bound covalently to encoded microbeads in a multiplex assay. Increasing the NaCl concentration decreased the binding for all aptamers. Changing pH values by one unit higher or lower did not influence the aptamer binding significantly. However, pH < 5 led to non-specific binding for all aptamers. The PfLDH-aptamer selected in the absence of divalent cations exhibited doubling of its binding signal by the addition of Ca and Mg. We confirmed Ca and Mg dependency of the aptamers for streptavidin and thrombin by observing a 90% and 50% binding decrease, respectively. We also achieved a doubling of binding for the streptavidin aptamer when replacing Ca and Mg by Mn. A buffer suitable for all aptamers can have considerable variations in pH or ionic strength, but divalent cations (Ca, Mg, Mn) are essential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863788PMC
http://dx.doi.org/10.1038/s41598-022-06817-0DOI Listing

Publication Analysis

Top Keywords

binding aptamers
12
binding
6
multiparametric fluorescence
4
fluorescence assay
4
assay screening
4
screening aptamer-protein
4
aptamer-protein interactions
4
interactions based
4
based microbeads
4
microbeads improving
4

Similar Publications

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.

View Article and Find Full Text PDF

Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!