Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers.

Proc Natl Acad Sci U S A

Research Laboratory for Biomedical Optics and Molecular Imaging, Chinese Academy of Sciences (CAS) Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;

Published: February 2022

Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity. To overcome this limitation, we have developed a tumor-targeting delivery system in which tumor-homing bacteria () are exploited as carriers to affect the point-specific delivery of genetically encoded photochromic probes to the tumor area. To improve the efficiency of the desired background suppression, we engineered a phytochrome-based reporter protein (mBphP-PCMm/F469W) that displays higher photoswitching contrast than those in the current state of the art. Photoacoustic computed tomography was applied to achieve good depth and resolution in the context of in vivo (mice) imaging. The present system effectively integrates a genetically encoded phytochrome-based reporter protein, PA imaging, and synthetic biology (GPS), to achieve essentially background-suppressed tumor-targeted PA monitoring in deep-seated tissues. The ability to image tumors at substantial depths may enable target-specific cancer diagnoses to be made with greater sensitivity, fidelity, and specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872805PMC
http://dx.doi.org/10.1073/pnas.2121982119DOI Listing

Publication Analysis

Top Keywords

background-suppressed tumor-targeted
8
photoacoustic imaging
8
ability image
8
background signals
8
genetically encoded
8
phytochrome-based reporter
8
reporter protein
8
imaging
5
tumor-targeted photoacoustic
4
imaging bacterial
4

Similar Publications

Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers.

Proc Natl Acad Sci U S A

February 2022

Research Laboratory for Biomedical Optics and Molecular Imaging, Chinese Academy of Sciences (CAS) Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;

Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!