Background: Neoantigens, new immunogenic sequences arising from tumor mutations, have been associated with response to immunotherapy and are considered potential targets for vaccination. Hepatocellular carcinoma (HCC) is a moderately mutated tumor, where the neoantigen repertoire has not been investigated. Our aim was to analyze whether tumors in HCC patients contain immunogenic neoantigens suitable for future use in therapeutic vaccination.
Methods: Whole-exome sequencing and RNAseq were performed in a cohort of fourteen HCC patients submitted to surgery or liver transplant. To identify mutations, single-nucleotide variants (SNV) originating non-synonymous changes that were confirmed at the RNA level were analyzed. Immunogenicity of putative neoAgs predicted by HLA binding algorithms was confirmed by using in vitro HLA binding assays and T-cell stimulation experiments, the latter in vivo, by immunizing HLA-A*02.01/HLA-DRB1*01 (HHD-DR1) transgenic mice, and in in vitro, using human lymphocytes.
Results: Sequencing led to the identification of a median of 1217 missense somatic SNV per patient, narrowed to 30 when filtering by using RNAseq data. A median of 13 and 5 peptides per patient were predicted as potential binders to HLA class I and class II molecules, respectively. Considering only HLA-A*02.01- and HLA-DRB1*01-predicted binders, 70% demonstrated HLA-binding capacity and about 50% were immunogenic when tested in HHD-DR1 mice. These peptides induced polyfunctional T cells that specifically recognized the mutated but not the wild-type sequence as well as neoantigen-expressing cells. Moreover, coimmunization experiments combining CD8 and CD4 neoantigen epitopes resulted in stronger CD8 T cell responses. Finally, responses against neoantigens were also induced in vitro using human cells.
Conclusion: These results show that mutations in HCC tumors may generate immunogenic neoantigens with potential applicability for future combinatorial therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066373 | PMC |
http://dx.doi.org/10.1136/jitc-2021-003978 | DOI Listing |
Front Immunol
December 2024
Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
December 2024
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.
The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan;
Background/aim: The Kaplan-Meier curves for patients treated with immune checkpoint inhibitors (ICIs) display a small group of potentially-cured patients with long-term survival, creating a 'kangaroo-tail' shape of the survival curve. However, the mechanistic basis of this phenomenon and what occurs in patients whose cancer is resistant to ICIs remain unclear. The present study aimed to answer these questions.
View Article and Find Full Text PDFFront Oncol
December 2024
Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya.
Background: The immune response against tumors relies on distinguishing between self and non-self, the basis of cancer immunotherapy. Neoantigens from somatic mutations are central to many immunotherapeutic strategies and understanding their landscape in breast cancer is crucial for targeted interventions. We aimed to profile neoantigens in Kenyan breast cancer patients using genomic DNA and total RNA from paired tumor and adjacent non-cancerous tissue samples of 23 patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!