The euphotic-mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic-mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae-globally important habitat creators-towards mesophotic depths. Across a 73 m depth gradient, we observed a general decline in macrofaunal biodiversity (fauna abundance, taxon richness and alpha diversity), but an increase in beta-diversity (i.e. variation between assemblages) at the deepest site (86 m depth, where light levels were less than 1% surface irradiance). We identified a gradient in abundance decline rather than distinct ecological shifts, driven by a complex interaction between declining light availability, declining size of the coralline algal host individuals and a changing host taxonomy. However, despite abundance declines, high between-assemblage variability at deeper depths allowed biodiversity-supporting potential to be maintained, highlighting their importance as coastal refugia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864346PMC
http://dx.doi.org/10.1098/rspb.2021.1834DOI Listing

Publication Analysis

Top Keywords

euphotic-mesophotic transition
12
biodiversity-supporting potential
8
ecosystem engineer
4
engineer morphological
4
morphological traits
4
traits taxon
4
taxon identity
4
identity shape
4
shape biodiversity
4
biodiversity euphotic-mesophotic
4

Similar Publications

Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil.

View Article and Find Full Text PDF

The euphotic-mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic-mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae-globally important habitat creators-towards mesophotic depths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!