A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic Organic-Inorganic Nanocomposite Scaffolds to Regenerate Cranial Bone Defects in a Rat Animal Model. | LitMetric

While bone regenerates itself after an injury, a critical bone defect requires external interventions. Engineering approaches to restore bone provide a temporary scaffold to support the damage and provide beneficial biological cues for bone repair. Biomimetically generated scaffolds replicate the naturally occurring phenomena in bone regeneration. In this study, a gelatin-calcium phosphate nanocomposite was synthesized by an efficient and cost-effective double-diffusion biomimetic approach. Calcium and phosphate ions are impregnated in the gelatin, mimicking the natural bone mineralization process. Glutaraldehyde from 0.5 to 2 w/v% was used for gelatin cross-linking and mechanical properties of the scaffold, and its biological support for rat bone marrow mesenchymal stromal cells was analyzed. Analysis of scanning electron microscopy images of the nanocomposite scaffolds and Fourier transform infrared (FTIR) and X-ray diffraction (XRD) characterizations of these scaffolds confirmed precipitation of calcium phosphates in the gelatin. Moreover, lysozyme degradation assay showed that scaffold degradation reversely correlates with the concentration of the cross-linking agent. Increased glutaraldehyde concentrations enhanced the mechanical properties of the scaffolds, bringing them closer to those of cancellous bone. Rat bone marrow mesenchymal stromal cells maintained their viability on these scaffolds compared to standard cell culture plates. In addition, these cells showed differentiation into bone lineage as evaluated from alkaline phosphatase activity up to 21 days and Alizarin red staining of the cells over 28 days. Eventually, scaffolds were implanted in a cranial defect in a rat animal model with a 5 mm diameter. Bone regeneration was studied over 90 days. Analysis of histological sections of the injury and computer tomography images revealed that nanocomposite scaffolds cross-linked with 1% w/v glutaraldehyde provide the maximum bone regeneration after 90 days. Collectively, our data show that nanocomposite scaffolds developed here provide effective regeneration for extensive bone defects .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.1c01331DOI Listing

Publication Analysis

Top Keywords

nanocomposite scaffolds
16
bone
14
bone regeneration
12
scaffolds
9
bone defects
8
rat animal
8
animal model
8
mechanical properties
8
rat bone
8
bone marrow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!