We predict negative temperature states in the discrete nonlinear Schödinger (DNLS) equation as exact solutions of the associated wave kinetic equation. Within the wave kinetic approach, we define an entropy that results monotonic in time and reaches a stationary state, that is consistent with classical equilibrium statistical mechanics. We also perform a detailed analysis of the fluctuations of the actions at fixed wave numbers around their mean values. We give evidence that such fluctuations relax to their equilibrium behavior on a shorter timescale than the one needed for the spectrum to reach the equilibrium state. Numerical simulations of the DNLS equation are shown to be in agreement with our theoretical results. The key ingredient for observing negative temperatures in lattices characterized by two invariants is the boundedness of the dispersion relation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.014206 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:
High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China.
Fe-N-C materials are emerging catalysts for replacing precious platinum in the oxygen reduction reaction (ORR) for renewable energy conversion. However, their potential is hindered by sluggish ORR kinetics, leading to a high overpotential and impeding efficient energy conversion. Using iron phthalocyanine (FePc) as a model catalyst, we elucidate how the local strain can enhance the ORR performance of Fe-N-Cs.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.
Methods based on density-functional theory usually treat open-shell atoms and molecules within the spin-unrestricted Kohn-Sham (KS) formalism, which breaks symmetries in real and spin space. Symmetry breaking is possible because the KS Hamiltonian operator does not need to exhibit the full symmetry of the physical Hamiltonian operator, but only the symmetry of the spin density, which is generally lower. Symmetry breaking leads to spin contamination and prevents a proper classification of the KS wave function with respect to the symmetries of the physical electron system.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
Site density (SD) and turnover frequency (TOF) are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts that represent the most promising alternatives to precious and scarce platinum. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NHI) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in situ released NH, but also regulates the electronic structure of the Fe-N-C moieties by the iodine dopants incorporated into the carbon matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!