A number of adult and embryonic epithelia, when suspended within native type I collagen gels, give rise to elongate bipolar cells that migrate freely within the three-dimensional matrix. The morphology of these newly formed mesenchyme-like cells is indistinguishable from "true" mesenchymal cells at the light and ultrastructural level. In this report, we extend previous observations on the transformation of embryonic avian lens epithelium to mesenchyme-like cells. Lens epithelia, dissected from 12-day chick embryos, were cultured either within a collagen matrix or on a two-dimensional surface. Cells derived from explants on the surface of type I collagen express the epithelial phenotype. The cells form new basal lamina, continue to express delta-crystallin protein and secrete both type IV collagen and laminin. In contrast, epithelia suspended within collagen gels lose epithelial morphology, phenotype, and cytodifferentiation. The newly formed mesenchyme-like cells lack the ability to synthesize lens-specific delta-crystallin protein, type IV collagen, and laminin. They do, however, express type I collagen de novo, a characteristic of mesenchymal cells. The changes in cytodifferentiation and tissue phenotype which occur during the transformation are stable under the conditions studied here. When mesenchyme-like cells are removed from the gel and replated onto two-dimensional surfaces, they remain bipolar, will invade collagen matrices, and are unable to synthesize delta-crystallin protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0012-1606(86)90256-3 | DOI Listing |
J Cell Physiol
September 2024
Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
Stem Cell Reports
March 2024
Center of Growth Metabolism and Aging, Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Chengdu, China; Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Electronic address:
Degenerative bone disorders have a significant impact on global health, and regeneration of articular cartilage remains a challenge. Existing cell therapies using mesenchymal stromal cells (MSCs) have shown limited efficacy, highlighting the necessity for alternative stem cell sources. Here, we have identified and characterized MSX1 mesenchymal progenitor cells in the developing limb bud with remarkable osteochondral-regenerative and microenvironment-adaptive capabilities.
View Article and Find Full Text PDFJ Cell Physiol
May 2024
Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India.
A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes.
View Article and Find Full Text PDFActa Neuropathol Commun
July 2023
RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
Glioblastoma (GBM) is the most frequent malignant brain tumor, the relapse of which is unavoidable following standard treatment. However, the effective treatment for recurrent GBM is lacking, necessitating the understanding of key mechanisms driving tumor recurrence and the identification of new targets for intervention. Here, we integrated single-cell RNA-sequencing data spanning 36 patient-matched primary and recurrent GBM (pGBM and rGBM) specimens, with 6 longitudinal GBM spatial transcriptomics to explore molecular alterations at recurrence, with each cell type characterized in parallel.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2022
Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany.
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non-myelinating, phagocytic, repair, and mesenchyme-like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re-growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!