Type 2 diabetes mellitus (DM2) is associated closely with non-alcoholic fatty liver disease (NAFLD) by affecting lipid metabolism, which may lead to non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). N-methyladenosine (m6A) RNA methylation is an important epigenetic regulation for gene expression and is related to HCC development. We developed a new NAFLD model oriented from DM2 mouse, which spontaneously progressed to histological features of NASH, fibrosis, and HCC with high incidence. By RNA sequencing, protein expression and methylated RNA immunoprecipitation (MeRIP)-qPCR analysis, we found that enhanced expression of ACLY and SCD1 in this NAFLD model and human HCC samples was due to excessive m6A modification, but not elevation of mature SREBP1. Moreover, targeting METTL3/14 in vitro increases protein level of ACLY and SCD1 as well as triglyceride and cholesterol production and accumulation of lipid droplets. m6A sequencing analysis revealed that overexpressed METTL14 binds to mRNA of ACLY and SCD1 and alters their expression pattern. Our findings demonstrate a new NAFLD mouse model that provides a study platform for DM2-related NAFLD and reveals a unique epitranscriptional regulating mechanism for lipid metabolism via m6A-modified protein expression of ACLY and SCD1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171149 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2022.02.021 | DOI Listing |
Cell Commun Signal
December 2024
Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO, 63104, USA.
One of the hallmarks of cancer is metabolic reprogramming which controls cellular homeostasis and therapy resistance. Here, we investigated the effect of momordicine-I (M-I), a key bioactive compound from Momordica charantia (bitter melon), on metabolic pathways in human head and neck cancer (HNC) cells and a mouse HNC tumorigenicity model. We found that M-I treatment on HNC cells significantly reduced the expression of key glycolytic molecules, SLC2A1 (GLUT-1), HK1, PFKP, PDK3, PKM, and LDHA at the mRNA and protein levels.
View Article and Find Full Text PDFFood Funct
October 2024
Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
Overconsumption of sucrose or fat is widely acknowledged as a prominent feature of unhealthy dietary patterns. Both factors commonly co-occur and are recognized as hallmarks of the Western diet, which is an important contributor to non-communicative diseases. In this study, we investigated the hazards of high sucrose or fat intake, either alone or in combination.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Beijing Institute of Biotechnology, Beijing, 100071, China.
De novo lipogenesis (DNL), a hallmark of cancer, facilitates tumor growth and metastasis. Therapeutic drugs targeting DNL are being developed. However, how DNL is directly regulated in cancer remains largely unknown.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
August 2024
Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
Hyperlipidemic pancreatitis (HP) is an inflammatory injury of the pancreas triggered by elevated serum triglyceride (TG) levels. The mechanistic target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating lipid homeostasis and inflammation. This study aimed to investigate whether the activity of mTOR complex 2 (mTORC2) affects the progression of HP and its underlying mechanisms.
View Article and Find Full Text PDFChem Biol Interact
July 2024
RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic. Electronic address:
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!