Purpose: The prevalence of epidermal growth factor receptor (EGFR) mutations in glioblastoma multiforme (GBM) has elicited a significant focus on EGFR as a potential drug target. However, no significant clinical advancement in GBM treatment has occurred.
Methods And Materials: Bioinformatics analysis, western blotting, immunofluorescence, and immunohistochemistry were performed to detect the expression of ZDHHC16 and genetic EGFR alterations in GBM. The biological function of ZDHHC16/SETD2/H3K36me3 signaling axis after EGFR alterations was demonstrated by various in vitro (pharmacologic treatment, flow cytometry, transwell migration assay, and coimmunoprecipitation) and in vivo (xenograft model) experiments.
Results: We demonstrate that the ZDHHC16/SETD2/H3K36me3 signaling axis was inactivated in EGFR-altered GBM. ZDHHC16 was downregulated in GBM versus normal brain tissue; this was significantly related to EGFR alterations. These events contributed to p53 activation, halting cells at the G1/S checkpoint. Furthermore, DNA damage repair signaling in EGFR-amplified GBMs was affected after ionizing radiation-induced DNA damage via reduced SETD2 palmitoylation and methylation of its target, H3K36. Our findings suggest that a depalmitoylation inhibitor, PalmB, is useful as a potentially novel adjuvant treatment for patients with GBM undergoing radiation therapy.
Conclusions: Our data present novel mechanistic evidence relating to signaling pathways with DNA damage responses in EGFR-mutated GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2022.02.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!