Membrane fouling, which limits the application of membrane bioreactors, has received considerable research attention in recent years. In this work, filtration modeling was performed in combination with surface plasmon resonance (SPR) analysis to investigate the membrane fouling mechanism. Sodium alginate (SA) and bovine serum albumin (BSA) were used to perform dead-end filtration on hydrophilic and hydrophobic poly (vinylidene fluoride) (PVDF) membranes. The initial foulant deposition and layer formation on membranes as well as the interaction between the BSA and SA were comprehensively analyzed. Results indicated that during SA filtration, initial fouling on hydrophilic membranes were primarily attributed to the particle-membrane interactions, while the fouling on the hydrophobic membrane were dominantly caused by the interactions among SA particles. The interaction between BSA and SA led to more severe membrane fouling and hydrophobic membrane was more sensitive to it, especially in the initial filtration process. The SPR results helped clarify the in-situ deposition behavior of BSA and SA particles on the PVDF surface. Compared to SA, BSA adsorbed faster on the PVDF membrane, and specific interactions played an essential role in BSA adsorption, whereas the deposition of SA on PVDF could be easily removed by shear force. Interactions between BSA and SA could alleviate the bonding between BSA and the PVDF membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.134056 | DOI Listing |
Water Res
January 2025
Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan.
In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.
View Article and Find Full Text PDFBiomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland. Electronic address:
The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
Managing wastewater and using renewable energy sources are challenges in achieving Sustainable Development Goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.
View Article and Find Full Text PDFWater Res
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!