Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-temperature electrolytes (LTEs) have been considered as one of the most challenging aspects for the wide adoption of lithium-ion batteries (LIBs) since the SOA electrolytes cannot sufficiently support the redox reactions at LT resulting in dramatic performance degradation. Although many attempts have been taken by employing various noncarbonate solvent electrolytes, there was a lack of fundamental understanding of the limiting factors for low-temperature operations (e.g., -20 to -40 °C). In this paper, the crucial role of the solid-electrolyte-interface (SEI) in LIB performance at low temperature using a butyronitrile (BN)-based electrolyte was demonstrated. These results suggested that an additive formed SEI with low resistance and low charge transfer dictates the LT performance in terms of capacity and cycle life, presenting a useful guideline in designing new electrolytes to address the LT issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c23934 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!