The indigenous population of the United Arab Emirates (UAE) has a unique demographic and cultural history. Its tradition of endogamy and consanguinity is expected to produce genetic homogeneity and partitioning of gene pools while population movements and intercontinental trade are likely to have contributed to genetic diversity. Emiratis and neighboring populations of the Middle East have been underrepresented in the population genetics literature with few studies covering the broader genetic history of the Arabian Peninsula. Here, we genotyped 1,198 individuals from the seven Emirates using 1.7 million markers and by employing haplotype-based algorithms and admixture analyses, we reveal the fine-scale genetic structure of the Emirati population. Shared ancestry and gene flow with neighboring populations display their unique geographic position while increased intra- versus inter-Emirati kinship and sharing of uniparental haplogroups, reflect the endogamous and consanguineous cultural traditions of the Emirates and their tribes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911814 | PMC |
http://dx.doi.org/10.1093/molbev/msac039 | DOI Listing |
bioRxiv
January 2025
Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Elucidating ancestry-specific structures in admixed populations is crucial for comprehending population history and mitigating confounding effects in genome-wide association studies. Existing methods for elucidating the ancestry-specific structures generally rely on frequency-based estimates of genetic relationship matrix (GRM) among admixed individuals after masking segments from ancestry components not being targeted for investigation. However, these approaches disregard linkage information between markers, potentially limiting their resolution in revealing structure within an ancestry component.
View Article and Find Full Text PDFAnn Bot
January 2025
Unit of Ecological Genetics, Institute of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, Vienna, Vienna.
Background And Aims: Torminalis glaberrima (Gand.) Sennikov & Kurtto is a European tree species currently underutilized in forestry, valued for its high-quality wood and contribution to ecosystem stability. Despite a projected range expansion as climate change progresses, current population fragmentation levels may inhibit the species' ability to migrate and stabilize fragile forest ecosystems.
View Article and Find Full Text PDFmSphere
January 2025
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Mol Ecol
January 2025
Globe Institute, University of Copenhagen, Copenhagen, Denmark.
The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!