Anterior cruciate ligament (ACL) deficiency not only reduces knee stability, but also increases the risk of more disease and impairs daily life, thus requiring efficient detection of ACL deficiency. To build an efficient subject-independent ACL deficiency detection model, this study proposes a new method called SVM-MPA that fuses marine predator algorithm (MPA) and support vector machine (SVM) for simultaneous feature selection, hyperparameter optimization and classification. 35ACL-deficient (ACLD) and 35 ACL-intact (ACLI) participants were recruited to collect 6-degree-of-freedom knee kinematic data. Then, 216-dimensional multi-domain features covering time domain, frequency domain, time-frequency domain and nonlinearity were extracted. The error rate of SVM classification based on 5-fold cross-validation was used to construct the fitness of MPA, and MPA served to select features and optimize two hyperparameters for SVM. The majority voting strategy-based post-processing was introduced to convert the gait cycle-level to knee-level ACL deficiency detection. Comparing with 7 well-known meta-heuristic algorithms and running all 20 times, the best average gait cycle-level ACL deficiency detection performance (sensitivity: 96.78±0.4.84%, specificity: 99.43±5.70%, and accuracy: 98.48±1.70%) was obtained using the proposed method. With post-processing, this study improved the best (final) detection performance (sensitivity: 97.78±4.97%, specificity: 100±0.00%, and accuracy: 99.13±1.94%). These results demonstrate the feasibility and effectiveness of the proposed method and shows that an efficient subject-independent ACL deficiency detection model can be constructed using the proposed method, which makes it possible to provide a non-invasive, objective and accurate preoperative auxiliary detection method for diagnosing ACL deficiency clinically.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3152846DOI Listing

Publication Analysis

Top Keywords

acl deficiency
28
deficiency detection
16
efficient subject-independent
12
proposed method
12
detection
8
anterior cruciate
8
cruciate ligament
8
deficiency
8
marine predator
8
predator algorithm
8

Similar Publications

Background: Anterior cruciate ligament (ACL) stress techniques-including single-leg stress radiographs, Telos, and KT-1000 arthrometer-are highly accessible and can provide additional diagnostic information to assess ACL and ACL graft integrity. The degree of anterior tibial translation (ATT) may be useful in guiding treatment when a diagnosis on magnetic resonance imaging is not conclusive or for judging if additional treatments, such as anterolateral complex augmentation, may be necessary.

Purpose/hypothesis: The purpose of this study was to evaluate the effect of increasing posterior tibial slope (PTS) on baseline tibial position (BTP) and side-to-side differences (SSD) in ATT.

View Article and Find Full Text PDF

Background: Meniscal allograft transplantation (MAT) is indicated in the setting of anterior cruciate ligament (ACL) reconstruction to restore proper arthrokinematics and load distribution for the meniscus-deficient knee. Objective outcomes after ACL reconstruction with concomitant MAT in athletic populations are scarcely reported and highly variable.

Purpose: To compare patient outcomes using an objective functional performance battery, self-reported outcome measures, and return-to-sport rates between individuals undergoing ACL reconstruction with concomitant MAT and a matched group undergoing isolated ACL reconstruction.

View Article and Find Full Text PDF

Background: Nonanatomical anterior cruciate ligament (ACL) reconstruction occasionally induces ACL failure without an evident injury episode, necessitating revision surgery. Although the in vivo kinematics of ACL deficiency before primary ACL reconstruction are well documented, the kinematics of ACL failure after nonanatomical reconstruction remain unexplored. The aim of this study is to investigate ACL failure kinematics following nonanatomical reconstruction.

View Article and Find Full Text PDF

Given the increasing use of innovative force plate systems in applied sports settings and the impact that anterior cruciate ligament (ACL) injuries have on team success, the purpose of the present study was to compare the lower-body neuromuscular performance characteristics of athletes who underwent ACL reconstruction (ACLR) and their non-injured counterparts (i.e., healthy controls).

View Article and Find Full Text PDF

The difficulties of rehabilitation after anterior cruciate ligament (ACL) injuries, subsequent return-to-sport (RTS) let alone achieving pre-injury performance, are well known. Isokinetic testing is often used to assess strength capacities during that process. The aim of the present machine learning (ML) approach was to examine which isokinetic data differentiates athletes post ACL reconstruction (ACLR) and healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!